| Discipline: | MECHANICAL | |-------------|------------------------| | Semester: | 3 RD | | Subject: | WORKSHOP TECHNOLOGY -1 | Lesson Plan Duration: 15 weeks | Week | | | Theory | | | | |-----------------|-----------------|---|---|--|--|--| | | | | | | | | | | Lectur
e day | Topic | | | | | | 1 st | 1 st | Welding ;- Pr | inciple of welding | | | | | | 2 nd | Classification | of welding processes | | | | | | 3 rd | Advantages & limitations of welding, industrial application of welding | | | | | | | 4 th | Welding posit | ion and techniques, symbols, safety precautions in welding | | | | | 2 nd | 1 st | Gas Welding, applications | Principle of operation, types of gas welding flames and their | | | | | | 2 nd | | Gas welding equipments, Gas welding torch , Oxygen cylinders, Acetylene cylinder, cutting torch | | | | | | 3 rd | Blow pipe, pressure regulators, filler roads | | | | | | | 4 th | Fluxes and personal safety equipments for welding | | | | | | 3 rd | 1 st | Arc welding, Principle of operation, arc welding machine and equipments | | | | | | | 2 nd | A.C. & D.C. arc welding, effect of polarity, current regulation and voltage regulation | | | | | | | 3 rd | Electrodes :- classification, B.I.S. specification and selection, flux for arc weldin | | | | | | | 4 th | Requirements of pre heating, post heating of electrodes and work piece welding defects and their testing method | | | | | | 4 th | 1 st | Resistance w | elding :- principle, advantages, limitations | | | | | | 2 nd | Working and | application of spot welding, seam welding, projection welding | | | | | | 3 rd | Percussion w
submerged a | elding, atomic hydrogen welding, shielded metal arc welding, rc welding | | | | | tages, | |--------------| | | | | | | | aterials | | | | | | | | their impact | | | | | | | | | | | | | | | | nd slinger | | rous and non | | | | g | | | | | 2 nd | Gating and risering system:- elements of gating system, pouring basin, sprue, runner, gates | |-------------------------|-----------------|---| | | 3 rd | Types of risers, location of risers, directional solidification | | | 4 th | Melting furnaces :- construction and working of pit furnace, cupola furnace | | 11 th | 1 st | Crucible furnace- tilting type, electric furnace | | | 2 nd | Casting defects :- different types of casting defects | | | 3 rd | Testing of defects :- radiography, magnetic particle inspection and ultra sonic inspection | | | 4 th | Metal forming processes :- press working, type of presses, type of dies, selection of press die, die material | | 12 th | 1 st | Press operations -shearing, piercing, trimming, punching | | | 2 nd | Notching, shaving, gearing, embossing, stamping | | | 3 rd | Forging – open die forging, closed die forging | | | 4 th | Press forging, upset forging, swaging | | 13 th | 1 st | Up setters, roll forging, cold & hot forging | | | 2 nd | Rolling – elementary theory of rolling, types of rolling mills | | | 3 rd | Thread rolling, roll passes | | | 4 th | Rolling defects & remedies | | 14 th | 1 st | Extrusion and drawing – types of extrusion, hot and cold, Direct & indirect | | | 2 nd | pipe drawing, wire drawing, tube drawing | | | 3 rd | Plastic processing :- industrial use of plastic and applications | | | 4 th | Advantages & limitations of use of plastic | | 15 th | 1 st | Injection moulding principle | | | 2 nd | Working of injection moulding machine | | | | | | 3 | 3 rd | Compression moulding principle | |---|-----------------|---| | 4 | 4 th | Working of compression moulding machine | Discipline:- Mechanical Engineering Semester:- 3rd Subject:- SOM **Lesson Plan Duration:- 15 weeks** Work Load:- Lectures-3, Practicals-2 | | | THEORY | PRACTICAL | | | |------|-----------------|---|------------------|--|--| | WEEK | LECTUR
E DAY | TOPIC | PRACTICAL
DAY | ТОРІС | | | 1st | 1 st | Introduction to the subject | 1st | Significance of practical work | | | | 2 nd | Stresses and Strains:- Basic concept | | and Preparation of file | | | | | of load, stress and strain | | | | | | 3 rd | Tensile, compressive and shear
stresses Linear strain, Lateral
strain, Shear strain | 2 nd | Significance of practical work and Preparation of file | | | 2nd | 1 st | Volumetric strain, Stress-strain curve for ductile materials | 1st | Tensile test on bars of Mild steel and Aluminium | | | | 2 nd | Stress-strain curve for brittle materials, | | | | | | 3 rd | Nominal stress, Yield point,
Ultimate stress and breaking | 2 nd | Tensile test on bars of Mild steel and Aluminium | | | | | stress | | | | | 3rd | 1 st | Percentage elongation, Proof stress and working stress, Factor of safety | 1st | Bending tests on a steel bar or a wooden beam | | | | 2 nd | Poisson's Ratio, Thermal stress
and strain | | | | | | 3 rd | Longitudinal and circumferential stresses in seamless thin walled cylindrical shells. | 2 nd | Bending tests on a steel bar or a wooden beam | | | 4th | 1 st | Introduction to Principal stresses | 1st | Impact test on metals a) Izod test | | | | 2 nd | Revision | | and a second second | | | | 3 rd | Resilience:- Strain Energy, Resilience, proof resilience and modulus of resilience | 2 nd | Impact test on metals a) Izod test | | | 5th | 1 st | Strain energy due to direct stresses and Shear Stress | 1st | Impact test on metals b) Charpy test | | | | 2 nd | Stresses due to gradual, sudden and falling load | | | | | | | THEORY | | PRACTICAL | |------|---|---|---------------------------|--| | WEEK | LECTUR
E DAY | TOPIC | PRACTICAL
DAY | ТОРІС | | | 3 rd | Revision | 2 nd | Impact test on metals b) Charpy test | | 6th | 1 st
2 nd
3 rd | | 1st Sessional | | | 7th | 1 st | Moment of Inertia: Concept of moment of inertia and second moment of area, Radius of gyration. Theorem of perpendicular axis and parallel axis (with derivation) | 1st | Torsion test of solid specimen of circular section of different metals for determining modulus of rigidity | | | 3 rd | Second moment of area of common geometrical sections : Rectangle, Triangle, Circle (without derivation) | 2 nd | Torsion test of solid specimen of circular section of different metals for determining modulus of rigidity | | 8th | 1 st | Second moment of area for L,T
and I section
Section modulus | 1st | To plot a graph between load and extension | | | 3 rd | Bending Moment and Shearing Force: Concept of various types of beams and form of loading | 2 nd | To plot a graph between load and extension | | 9th | 1 st | B.M. and S.F. Diagram for cantilever and simply supported beams with and without overhang subjected to concentrated and U.D.L | 1st | | | | 2 nd | Bending stresses: Concept of
Bending stresses, Theory of simple
bending, Derivation of Bending
Equation | | File Checking | | | 3 rd | Use of the equation $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$ | 2 nd | | | 10th | 1 st
2 nd
3 rd | | Sessional 2 nd | | | 11th | 1 st | Concept of moment of resistance,
Bending stress diagram
Section modulus for rectangular,
circular and symmetrical I section | 1st | To determine the stiffness of a helical spring. | | | 3 rd | Calculation of maximum bending stress in beams of rectangular, circular, and T section | 2 nd | To determine the stiffness of a helical spring. | | | | THEORY | PRACTICAL | | | |------|---|--|---------------------------|-----------------------------------|--| | WEEK | LECTUR
E DAY | ТОРІС | PRACTICAL
DAY | TOPIC | | | 12th | 1 st | Columns: Concept of column,
modes of failure, Buckling load,
crushing load | 1st | Hardness test on different metals | | | | 2 nd | Slenderness ratio, Effective length,
Factors effecting strength of a
column | | | | | | 3 rd | Strength of column by Euler
Formula without derivation | 2 nd | Hardness test on different metals | | | 13th | 1 st | Torsion: Derivation of Torsion
Equation, use of torsion equation
for circular shaft | 1st | | | | | 2 nd | Comparison between solid and hollow shaft with regard to their strength and weight | | File Checking | | | | 3 rd | Power transmitted by shaft, Concept of mean and maximum torque | 2 nd | | | | 14th | 1 st | Springs: Closed coil helical springs
subjected to axial load and
calculation of: Stress deformation
- Stiffness and angle of twist
and strain energy | lst | | | | | 2 nd | Strain energy and proof resilience. | | Internal Viva Voce | | | | 3 rd | Determination of number of plates
of laminated spring (semi elliptical
type only) | 2 nd | | | | 15th | 1 st
2 nd
3 rd | | Sessional 3 rd | 1 | | | Name | of Fac | sultv | 1 | 7 | | |--|----------------------|---|------------------------|---|--| | Discip | 100 | Luity | Mechanical Engineering | | | | Semes | | | 3rd | | | | Subjec | | | Thermodynamics | | | | | Lesson Plan Duration | | | eeks | | | Workload Lecture/Practical per week in Hours: Lecture (3), Practical (3) | | | | CCRS | | | WOIKI | r — | ry Lecture | Practi | tool | | | Week | | Topic (including assignment/ test) | Day | Topic | | | WEEK | Day | Topic (including assignment/ test) | Day | Introduction to Thermodynamics Lab | | | | | Thermodynamic state and system, boundary, surrounding, | | introduction to Thermodynamics Lab | | | 1 | 1st | universe, thermodynamic systems – closed, open, isolated, | | | | | | | adiabatic, homogeneous and heterogeneous | | | | | W.00 | | Macroscopic and microscopic study/ approach, properties | | | | | 1 st | 2nd | of system – intensive and extensive, thermodynamic | 1 st | | | | | | equilibrium, quasi – static process, reversible and irreversible processes | | | | | | | Zeroth law of thermodynamics, definition of properties like | 1 | | | | | 3rd | pressure, volume, temperature, enthalpy and internal | | | | | | | energy | | | | | | 4th | Backlog Coverage/ Revision/ HW & CW evaluation/ | | Determination of temperature by | | | | | Discussion/ Q&A/ Doubt Clearing | | 1 Thermocouple | | | | . 50.7 | Definition of gases, explanation of perfect gas laws –
Boyle's law, Charle's law, Avagadro's law, Regnault's | | 2 Pyrometer 3 Infrared thermometer | | | | 5th | law, Universal gas constant, Characteristic gas constants | | 5 initiated thermometer | | | 2 nd | | and its derivation. | 2nd | | | | | | Specific heat at constant pressure, specific heat at constant | | | | | | | volume of a gas, derivation of an expression for specific | | | | | | 6th | heats with characteristics, simple numerical problems on gas equation. | | | | | | | gas equation. | | | | | | 7th | Backlog Coverage/ Revision/ Assignment-1/ Discussion/ | | Demonstration of mountings on a boiler. | | | | 7111 | Q&A/ Doubt Clearing | | | | | | | Types of thermodynamic processes- isochoric process and | | | | | 3rd | 8th | their equations, derivation for workdone, change in internal energy, change in entropy, enthalpy, heat transfer for the | 3rd | | | | Siu | | process. | Jiu | | | | | | Isobaric, Isothermal and their equations, derivation for | İ | | | | | 9th | workdone, change in internal energy, change in entropy, | | | | | | | enthalpy, heat transfer for the process. | | | | | i) | 10th | Backlog Coverage/ Revision/ Assignment-1 evaluation/
Discussion/ Q&A/ Doubt Clearing | | Demonstration of accessories on a boiler. | | | | | Adiabatic, Isentropic, Polytropic, Throttling process and | | | | | | | their equations, derivation for workdone, change in internal | | | | | 4th | 11th | energy, change in entropy, enthalpy, heat transfer for the | 4th | | | | | | process. | | | | | | | Laws of conservation of energy, first law of | | | | | | 12th | thermodynamics (Joule's experiment) and its limitations | | | | | | | Flow system, Non-flow system, Application of first law of | | Study the working of Lancashire boiler | | | | 13th | thermodynamics to Non-flow systems like Constant | | and Nestler boiler. | | | | | Volume process | | | | | 5+L | 1.44- | Application of first law of thermodynamics to Non-flow | £41. | | | | 5th | 140 | systems like Constant pressure, Adiabatic and Polytropic processes | 5th | | | | | | Steady Flow Energy Equation (SFEE), Application of | 1 | | | | | 15th | steady flow energy equation for turbines, numn, hoilers | | l l | | | | | | | | | | | 19th | Heat source and sink, Statements of Second laws of thermodynamics: Kelvin Planck's statement, Classius statement | | Study of working of high pressure boiler. | |------|--------------|---|------|---| | 7th | 20th | Equivalency of K-P and Clausius statements, Perpetual Motion Machine of first kind, second kind, Carnot engine, Introduction of third law of thermodynamics | 7th | | | | 21st | Concept of irreversibility and concept of entropy | | | | | 22nd | Backlog Coverage/ Revision/ Assignment-2/ Discussion/
Q&A/ Doubt Clearing | | Study of boilers (Through industrial visit) | | 8th | 23rd | Concept of ideal gas, enthalpy and specific heat capacities of an ideal gas, $P-v-t$ surface of an ideal gas, triple point, real gases, vander-wall's equation | 8th | | | | 24th | properties of steam, sensible heat, latent heat, internal energy of steam, entropy of water, entropy of steam, steam tables | | | | | 25th | T- s diagrams, mollier diagram (h – s Chart), expansion of steam | | Objective Type Question/ Answer | | 9th | 26th | Hyperbolic, reversible adiabatic and throttling processes, determination of quality of steam (dryness fraction) | 9th | | | | 27th | tube and water tube boilers | | | | | 28th | Function of various boiler mounting | | Backlog Coverage | | | 29th | Function of various boiler accessories | | | | 10th | 30th | Construction and working of lancashire boiler, nestler boiler, babcock & wilcox boiler, introduction to modern | 10th | | | | 31st | boilers. Sessional test-2 | - 1 | Sessional test-2 | | 11th | | Sessional test-2 | 11th | Sessional test 2 | | 11 | _ | Sessional test-2 | | | | | 5514 | Meaning of air standard cycle – its use, condition of | | Determination of Dryness fraction of | | | 34th | reversibility of a cycle, description of carnot cycle, otto cycle, diesel cycle, Simple problems on efficiency for different cycles | | steam using calorimeter. | | 12th | 35th | Comparison of otto, diesel cycles for same compression ratio, same peak pressure developed and same heat input. | 12th | | | | 36th | Reasons for highest efficiency of carnot cycle and all other cycles working between same temperature limits | | | | | | Functions of air compressor – uses of compressed air, type | | Demonstrate the working of air | | 13th | 37th
38th | of air compressors Single stage reciprocating air compressor, its construction and working, representation of processes involved on P – V diagram, calculation of work done. | 13th | compressor. | | | 30th | Multistage compressors – advantages over single stage compressors, use of air cooler, Condition of minimum | 12 | | | | 39th | work in two stage compressor (without proof), simple problems | | | | | 40th | Rotary compressors – types, working and construction of centrifugal compressor, axial flow compressor, vane type compressor | | Evaluation & Internal Viva-voce | | 14th | 41st | Backlog Coverage/ Revision/ Assignment-2 evaluation/ Discussion/ Q&A/ Doubt Clearing | 14th | | Discipline: Mechanical Engg. Deptt. Semester : 3rd Semester Subject : Mechanical Engg. Drawing Lesson Plan Duration: 15-16 weeks | Week | Topic / Chapter | Practical | Topic | |-----------------|---------------------------------------|-----------|---| | | | day | S.P.S. | | 1 st | Chapter 1 : Limit, fits and tolerance | (Group-1 | Need of limit, fits and | | | (01 sheets) | | tolerance, Maximum limit of | | | | | size, minimum limit of size, | | | | | tolerance, allowance, deviation, | | | | | upper deviation, lower | | | | | deviation, fundamental | | | | | deviation, clearance, maximum | | | | | clearance, minimum clearance. | | | | | Need of limit, fits and | | | | (Group-2) | tolerance, Maximum limit of | | | | | size, minimum limit of size, | | | | | tolerance, allowance, deviation, | | | | | upper deviation, lower | | | | | deviation, fundamental | | | | | deviation, clearance, maximum | | | | | clearance, minimum clearance. | | | | Sheet 1 | clearance fit, interference fit | | | | (Group-1) | and transition fit. Hole | | | | | basis system, shaft basis | | | | | system, tolerance | | | | | grades, calculating | | | | | values of clearance, | | | | | interference, hole | | | | | tolerance, shaft | | | | | tolerance with given | | | | | basic size for common | | | | | assemblies like H ₇ /g6, | | | | | H ₇ /m6, H ₈ /p6. Basic | | | | | terminology and | | | | | symbols of geometrical | | | | | dimensioning and | |-----------------|-----------------------------------|-----------|---------------------------------------| | | | | tolerances. | | | | Sheet 1 | clearance fit, interference fit | | | | (Group-2) | and transition fit. Hole | | | | | basis system, shaft basis | | | | | system, tolerance | | | | | grades, calculating | | | | | values of clearance, | | | | | 1 | | | | | · · · · · · · · · · · · · · · · · · · | | | | | tolerance, shaft | | | | | tolerance with given | | | | | basic size for common | | | | | assemblies like H ₇ /g6, | | | | | $H_7/m6$, $H_8/p6$. Basic | | | | | terminology and | | | | | symbols of geometrical | | | | | dimensioning and | | | | | tolerances. | | 2 nd | Chapter 2: Universal coupling and | Sheet 2 | Universal coupling and | | | Oldham coupling (Assembly) | (Group-1) | Oldham coupling | | | | | (Assembly) | | | & | Sheet 2 | Universal coupling and | | | Chapter 3 : Bearings | (Group-2) | Oldham coupling (Assembly) | | | | Sheet 3 | Bushed Bearing (Assembly | | | | (Group-1) | Drawing) | | | | Sheet 3 | Bushed Bearing (Assembly | | | | (Group-2) | Drawing) | | 3 rd | Chapter 3 : Bearings | Sheet 4 | Ball Bearing and Roller | | | | (Group-1) | Bearing (Assembled | | | | | Drawing) | | | | Sheet 4 | Ball Bearing and Roller Bearing | | | | (Group-2) | (Assembled Drawing | | | | Sheet 5 | Plummer Block (Detail and | | | | (Group-1) | Assembly Drawing) | | | | Sheet 5 | Plummer Block (Detail and | | 4th | GI | (Group-2) | Assembly Drawing) | | 4 th | Chapter 3 : Bearings | Sheet 6 | Foot step Bearing | | | & | (Group-1) | (Assembled Drawing) | | | Chapter 4 : Pulleys | Sheet 6 | Foot step Bearing | | | | (Group-2) | (Assembled Drawing) | | | | G1 + 7 | planes | | | | Sheet 7 | Free hand Sketch of Various | | | | (Group-1) | types of pulleys | |-----------------|-------------------------------------|-----------|--------------------------------| | | | Sheet 7 | Free hand Sketch of Various | | | | (Group-2) | types of pulleys | | 5 th | Chapter 4 : Pulleys | Sheet 8 | Fast and loose pulley | | | | (Group-1) | (Assembly Drawing) | | | & | Sheet 8 | Fast and loose pulley | | | Chapter 5 : Pipe Joints | (Group-2) | (Assembly Drawing) | | | Chapter 5.1 the sources | Sheet 9 | Types of pipe Joints, Symbol | | | | (Group-1) | and line layout of pipe lines | | | | Sheet 9 | Types of pipe Joints, Symbol | | | | (Group-2) | and line layout of pipe lines | | 6 th | Chapter 5 : Pipe Joints | Sheet 10 | Expansion pipe joint | | | | (Group-1) | (Assembly drawing) | | | | Sheet 10 | Expansion pipe joint | | | | (Group-2) | (Assembly drawing) | | | | Sheet 11 | Flanged pipe and right angled | | | | (Group-1) | bend joint (Assembly Drawing) | | | | Sheet 11 | Flanged pipe and right | | | | (Group-2) | angled bend joint (Assembly | | | | | Drawing) | | 7 th | Chapter 6 : Lathe Tool Holder | Sheet 12 | Lathe Tool Holder | | | | (Group-1) | (Assembly Drawing) | | | & | Sheet 12 | Lathe Tool Holder | | | | (Group-2) | (Assembly Drawing) | | | | Sheet 13 | Reading and interpretation of | | | Chapter 7: Reading & Interpretation | (Group-1) | mechanical components and | | | of Mechanical Components | | assembly drawings | | | P | Sheet 13 | Reading and interpretation of | | | | (Group-2) | mechanical components and | | | | | assembly drawings | | 8 th | Chapter 8 : Bearing & Brackets | Sheet 14 | Sketching practice of bearings | | | (Sketches) | (Group-1) | and bracket. | | | | Sheet 14 | Sketching practice of bearings | | | & | (Group-2) | and bracket. | | | Chapter 9 : Drilling Jig | Sheet 15 | Drilling Jig (Assembly | | | | (Group-1) | Drawing) | | | & | Sheet 15 | Drilling Jig (Assembly | | | | (Group-2) | Drawing) | | 9 th | Chapter 10 : Machine Vice | Sheet 16 | Machine vices (Assembly | | | | (Group-1) | Drawing) | | | | Sheet 16 | Machine vices (Assembly | | Ì | 1 | (Group-2) | Drawing) | | | | Sheet 17 | Machine vices (Assembly | |------------------|-----------------------------------|-----------|---------------------------------------| | | | (Group-1) | Drawing) | | | | Sheet 17 | Machine vices (Assembly | | | | (Group-2) | Drawing) | | 10 th | Chapter 10 : I.C. Engine Parts | Sheet 18 | Piston | | | | (Group-1) | | | | | Sheet 18 | Piston | | | | (Group-2) | | | | | Sheet 19 | Connecting rod (Assembly | | | | (Group-1) | Drawing) | | | | Sheet 19 | Connecting rod (Assembly | | | | (Group-2) | Drawing) | | | | | | | 11 th | Chapter 10 : I.C. Engine Parts | Sheet 20 | Crankshaft and flywheel | | | | (Group-1) | (Assembly Drawing) | | | & | Sheet 20 | Crankshaft and flywheel | | | | (Group-2) | (Assembly Drawing) | | | Chapter 11 : Boiler Parts | , , | , , , , , , , , , , , , , , , , , , , | | | | Sheet 21 | Steam Stop Valve (Assembly | | | | (Group-1) | Drawing) | | | | Sheet 21 | Steam Stop Valve (Assembly | | | | (Group-2) | Drawing | | 12 th | Chapter 11 : Boiler Parts | Sheet 22 | Blow off cock. (Assembly | | | | (Group-1) | Drawing) | | | & | Sheet 22 | Blow off cock. (Assembly | | | | (Group-2) | Drawing) | | | Chapter 12: Mechanical Screw Jack | (Group-2) | Diawing) | | | | Sheet 23 | Mechanical Screw Jack | | | | (Group-1) | (Assembled Drawing) | | | | Sheet 23 | Mechanical Screw Jack | | 404 | | (Group-2) | (Assembled Drawing) | | 13 th | | Sheet 24 | Gear, Types of gears, | | | Chapter 13 : Gears | (Group-1) | Nomenclature of gears and | | | | C1 + 2.4 | conventional representation | | | | Sheet 24 | Gear, Types of gears, | | | | (Group-2) | Nomenclature of gears and | | | | Chart 25 | conventional representation | | | | Sheet 25 | Draw the actual profile | | | | (Group-1) | of involute teeth of spur gear | | | | | by different methods. | | | | | | | | Sheet 25 | Draw the actual profile | |--|-----------|--------------------------------| | | (Group-2) | of involute teeth of spur gear | | | | by different methods. | | | | | Discipline **Mechanical Engineering** Semester 3rd Semester BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING Subject **Lesson Plan Duration:** 15 weeks Work Load (L/P) (3 Periods/ 2 periods) /Week | | Theory | | Practical | | |-----------------|------------------|--|---|--| | Week | Lecture
Day | Topics | Topics | | | 1 st | 1 st | Unit 1 Application and Advantage of Electricity- Difference between ac and dc, various applications of electricity | 1 st Connection of a three-phase motor and starter with fuses and reversing of direction of rotation | | | | 2nd | advantages of electrical energy over other types of energy | | | | | 3rd | Unit 2 Basic Electrical Quantities- Definition of voltage, current, power and energy with their unit | | | | | 4th | name of instruments used for measuring above | | | | 2nd | 5th | connection of these instruments in an electric | 2nd Connection of a single-phase induction motor with supply and | | | | 6 th | Unit 3 AC Fundamentals- Electromagnetic induction-Faraday's Laws, Lenz's Law; | reversing of its direction of rotation | | | | 7th | Principles of a.c. Circuits; Alternating emf, | | | | | 8th | amplitude and time period. Instantaneous, average | | | | 3rd | 9th | r.m.s and maximum value of sinusoidal wave | 3 rd Troubleshooting in domestic wiring system, including distribution board | | | | 10 th | form factor and Peak Factor. Concept of phase and phase | | | | | 11 th | difference. Concept of resistance, | | | | | 12 th | inductance and capacitance in simple a.c. circuit | | | | 4 th | 13 th | power factor and improvement of power factor by use of capacitors. | 4th Connection and reading of an electric energy meter | | | | 14th | Concept of three phase system | | | | | 15 th | star and delta connections | | | | | 16 th | voltage and current relationship (no derivation) | | | | 5th | 17 th | Definition of cycle, frequency | 5th Useofammeter, voltmeter, wattmeter, and multi-meter | | | | 18 th | Unit 4 Transformers-Introduction | | | | | 19 th | Working principle and construction of single phase transformer | | | |------------------|------------------|---|--|--| | | 20^{th} | SESSIONAL I | | | | 6th | 21st | transformer ratio, emf equation | 6 th Measurement of power and power factor in a given single phase ac circuit | | | | 22nd | losses and efficiency, cooling of transformers | | | | | 23 rd | isolation transformer, CVT | | | | | 24 th | auto transformer (brief idea), applications. | | | | 7th | 25 th | Unit 5 Distribution System-Introduction | 7 th Study of different types of fuses, MCBs and ELCBs | | | | 26 th | Difference between high and low voltage distribution system, identification of three-phase wires | | | | | 27 th | neutral wire and earth wire in a low voltage distribution system. | | | | | 28 th | Identification of voltages between phases | 76 | | | 8th | 29 th | between one phase and neutral. Difference between three-
phase and single-phase supply
Unit 6 Electric Motor- Description and | 8 th Study of zener diode as a constant | | | - | 30 th | | voltage source and to draw its V-I characteristics | | | | 2.1St | applications of single-phase and three-phase | Characteristics | | | | 31 st | Connection and starting of three-phase induction motors by star-delta starter | | | | | 32 nd | Changing direction of rotation of a given 3 phase | | | | 9th | 33 rd | Motors used for driving pumps | 9 th Study of earthing practices | | | | 34 th | compressors, centrifuge, dyers etc. | | | | | 35 th | Totally enclosed submersible and flame proof | | | | 41. | 36th | Unit 7 Domestic Installation- Introduction | | | | 10 th | 37 th | [Simple problems on the above topics] | 10 th To draw V-I characteristics of a (i) NPN transistor | | | | 38th | Distinction between light-fan circuit | | | | | 39th | SESSIONAL II | _ | | | | 40 th | single phase power circuit, sub-circuits | | | | 11 th | 41 st | various accessories and parts of domestic electrical installation | 11 th To draw V-I characteristics of (ii) thyristor (SCR) | | | | 42 nd | Identification of wiring systems | 7 | | | | 43rd | Common safety measures and earthing | | | | | 44 th | Unit 8 Electrical Safety-Introduction | | | | 12 th | 45 th | Electrical shock and precautions against shock | Study of construction and working of a (i) stepper motor and | | | | 46 th | treatment of electric shock | | | | | 47 th | concept of fuses and their classification | | | | | 48 th | selection and application, | | | |------------------|--------------------|--|---|--| | 13 th | 49 th | concept of earthing and various types of earthing | Study of construction and working of a (ii) servo motor | | | | 50 th | applications of MCBs and ELCBs | | | | | 51 st | Unit 9 Basic Electronics | | | | | 52 nd | Basic idea of semiconductors – P and N type |] | | | 14 th | 53 ^{ra} | diodes, zener diodes and their applications | REVISION OF PRACTICALS | | | | 54 th | transistor – PNP and NPN | | | | | 55 th | their characteristics and uses. |] | | | | 56 th . | Characteristics and applications of a thyristor | | | | 15 th | 57 th | characteristics and applications of stepper motors | | | | | 58 th | servo motors in process control. | VIVA-VOCE | | | | 59 th | REVISION OF SYLLABUS | | | | | 60 th | SESSIONAL TEST -III | | |