
LECTURE NOTES ON

DATA STRUCTURES USING C

I

BASIC CONCEPTS

CONTENTS

Introduction to Data Structures
Data structures: organizations of data
Abstract Data Type (ADT)

Selecting a data structure to match the operation
Algorithm

Practical Algorithm design issues
Performance of a program
Classification of Algorithms
Complexity of Algorithms
Rate of Growth
Analyzing Algorithms
Exercises

Multiple Choice Questions

LINKED LISTS

Linked List Concepts
Types of Linked Lists
Single Linked List

Source Code for the Implementation of Single Linked List
Using a header node
Array based linked lists
Double Linked List

A Complete Source Code for the Implementation of Double Linked List

Circular Single Linked List
Source Code for Circular Single Linked List

Circular Double Linked List
Source Code for Circular Double Linked List

Comparison of Linked List Variations
Polynomials

Source code for polynomial creation with help of linked list

Addition of Polynomials
Source code for polynomial addition with help of linked list:

Exercise
Multiple Choice Question

II

 STACK AND QUEUE

Stack
Representation of Stack

Program to demonstrate a stack, using array
Program to demonstrate a stack, using linked list

Algebraic Expressions
Converting expressions using Stack
Conversion from infix to postfix

Program to convert an infix to postfix expression
Conversion from infix to prefix

Program to convert an infix to prefix expression
Conversion from postfix to infix
Program to convert postfix to infix expression
Conversion from postfix to prefix
Program to convert postfix to prefix expression
Conversion from prefix to infix
Program to convert prefix to infix expression

Conversion from prefix to postfix
Program to convert prefix to postfix expression

Evaluation of postfix expression
Applications of stacks
Queue

Representation of Queue
Program to demonstrate a Queue using array

Program to demonstrate a Queue using linked list
Applications of Queue

Circular Queue
Representation of Circular Queue

Deque
Priority Queue
Exercises

Multiple Choice Questions

RECURSION

Introduction to Recursion
Differences between recursion and iteration
Factorial of a given number

The Towers of Hanoi

Fibonacci Sequence Problem
Program using recursion to calculate the NCR of a given number
Program to calculate the least common multiple of a given number
Program to calculate the greatest common divisor
Exercises

Multiple Choice Questions

BINARY TREES

Trees
Binary Tree
Binary Tree Traversal Techniques

Recursive Traversal Algorithms
Building Binary Tree from Traversal Pairs
Binary Tree Creation and Traversal Using Arrays
Binary Tree Creation and Traversal Using Pointers
Non Recursive Traversal Algorithms

II
I

Expression Trees
Converting expressions with expression trees

Threaded Binary Tree
Binary Search Tree

General Trees (m-ary tree)
Converting a m-ary tree (general tree) to a binary tree

Search and Traversal Techniques for m-ary trees
Depth first search
Breadth first search

Sparse Matrices
Exercises
Multiple Choice Question

SEARCHING AND SORTING

Linear Search
A non-recursive program for Linear Search
A Recursive program for linear search

Binary Search
A non-recursive program for binary search
A recursive program for binary search
Bubble Sort
Program for Bubble Sort
Selection Sort

 Non-recursive Program for selection sort

 Recursive Program for selection sort
Quick Sort

Recursive program for Quick Sort
Priority Queue and Heap and Heap Sort

 Max and Min Heap data structures
Representation of Heap Tree
Operations on heap tree
Merging two heap trees
Application of heap tree

Heap Sort
Program for Heap Sort

Priority queue implementation using heap tree
Exercises
Multiple Choice Questions

References and Selected Readings

Index

Basic Concepts

The term data structure is used to describe the way data is stored, and the term
algorithm is used to describe the way data is processed. Data structures and
algorithms are interrelated. Choosing a data structure affects the kind of algorithm you
might use, and choosing an algorithm affects the data structures we use.

An Algorithm is a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time. No matter
what the input values may be, an algorithm terminates after executing a finite number
of instructions.

1.1. Introduction to Data Structures:

Data structure is a representation of logical relationship existing between individual elements of
data. In other words, a data structure defines a way of organizing all data items that considers

not only the elements stored but also their relationship to each other. The term data structure is
used to describe the way data is stored.

To develop a program of an algorithm we should select an appropriate data structure for that
algorithm. Therefore, data structure is represented as:

Algorithm + Data structure = Program

A data structure is said to be linear if its elements form a sequence or a linear list. The linear

data structures like an array, stacks, queues and linked lists organize data in linear order. A data
structure is said to be non linear if its elements form a hierarchical classification where, data
items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures
represents hierarchial relationship between individual data elements. Graphs are nothing but
trees with certain restrictions removed.

Data structures are divided into two types:

 Primitive data structures.

 Non-primitive data structures.

Primitive Data Structures are the basic data structures that directly operate upon the machine
instructions. They have different representations on different computers. Integers, floating point

numbers, character constants, string constants and pointers come under this category.

Non-primitive data structures are more complicated data structures and are derived from
primitive data structures. They emphasize on grouping same or different data items with
relationship between each data item. Arrays, lists and files come under this category. Figure
1.1 shows the classification of data structures.

Fig ure 1. 1. C lass if icat io n of Da t a St ruct ures

1.2. Data structures: Organization of data

The collection of data you work with in a program have some kind of structure or organization.
No matte how complex your data structures are they can be broken down into two fundamental
types:

 Contiguous

 Non-Contiguous.

In contiguous structures, terms of data are kept together in memory (either RAM or in a file). An
array is an example of a contiguous structure. Since each element in the array is located next to
one or two other elements. In contrast, items in a non-contiguous structure and scattered in

memory, but we linked to each other in some way. A linked list is an example of a non-contiguous
data structure. Here, the nodes of the list are linked together using pointers stored in each node.
Figure 1.2 below illustrates the difference between contiguous and non- contiguous structures.

1 2 3

Figure 1.2 Contiguous and Non-contiguous structures compared

Contiguous structures:

Contiguous structures can be broken drawn further into two kinds: those that contain data items
of all the same size, and those where the size may differ. Figure 1.2 shows example of each kind.

The first kind is called the array. Figure 1.3(a) shows an example of an array of numbers. In an
array, each element is of the same type, and thus has the same size.

The second kind of contiguous structure is called structure, figure 1.3(b) shows a simple structure
consisting of a person’s name and age. In a struct, elements may be of different data types and
thus may have different sizes.

int arr[3] = {1, 2, 3}; struct cust_data

{
int age;
char name[20];

};

(a) Array
cust_data bill= {21, “bill the student”};

(b) struct

“bill the student”

21

For example, a person’s age can be represented with a simple integer that occupies two bytes of
memory. But his or her name, represented as a string of characters, may require many bytes
and may even be of varying length.

Couples with the atomic types (that is, the single data-item built-in types such as integer, float

and pointers), arrays and structs provide all the “mortar” you need to built more exotic form of
data structure, including the non-contiguous forms.

1 2 3

Figure 1.3 Examples of contiguous structures.

Non-contiguous structures:

Non-contiguous structures are implemented as a collection of data-items, called nodes, where
each node can point to one or more other nodes in the collection. The simplest kind of non-
contiguous structure is linked list.

A linked list represents a linear, one-dimension type of non-contiguous structure, where there is
only the notation of backwards and forwards. A tree such as shown in figure 1.4(b) is an example
of a two-dimensional non-contiguous structure. Here, there is the notion of up and down and left
and right.

In a tree each node has only one link that leads into the node and links can only go down the
tree. The most general type of non-contiguous structure, called a graph has no such restrictions.
Figure 1.4(c) is an example of a graph.

Figure 1.4. Examples of non-contiguous structures

 F D

 F

 B

D
A

 B

A B A

D P N

1

2

3

4

C B A

Hybrid structures:

If two basic types of structures are mixed then it is a hybrid form. Then one part contiguous and
another part non-contiguous. For example, figure 1.5 shows how to implement a double– linked
list using three parallel arrays, possibly stored a past from each other in memory.

Figure 1.5. A double linked list via a hybrid data structure

The array D contains the data for the list, whereas the array P and N hold the previous and next
“pointers’’. The pointers are actually nothing more than indexes into the D array. For instance,
D[i] holds the data for node i and p[i] holds the index to the node previous to i, where may or

may not reside at position i–1. Like wise, N[i] holds the index to the next node in the list.

1.3. Abstract Data Type (ADT):

The design of a data structure involves more than just its organization. You also need to plan for
the way the data will be accessed and processed – that is, how the data will be interpreted
actually, non-contiguous structures – including lists, tree and graphs – can be implemented either
contiguously or non- contiguously like wise, the structures that are normally treated as
contiguously - arrays and structures – can also be implemented non-contiguously.

The notion of a data structure in the abstract needs to be treated differently from what ever is

used to implement the structure. The abstract notion of a data structure is defined in terms of
the operations we plan to perform on the data.

Considering both the organization of data and the expected operations on the data, leads to the
notion of an abstract data type. An abstract data type in a theoretical construct that consists of
data as well as the operations to be performed on the data while hiding implementation.

For example, a stack is a typical abstract data type. Items stored in a stack can only be added

and removed in certain order – the last item added is the first item removed. We call these
operations, pushing and popping. In this definition, we haven’t specified have items are stored
on the stack, or how the items are pushed and popped. We have only specified the valid
operations that can be performed.

For example, if we want to read a file, we wrote the code to read the physical file device. That
is, we may have to write the same code over and over again. So we created what is known

A

B

C

D

3

4

0

1

4

0

1

2

today as an ADT. We wrote the code to read a file and placed it in a library for a programmer to
use.

As another example, the code to read from a keyboard is an ADT. It has a data structure,
character and set of operations that can be used to read that data structure.

To be made useful, an abstract data type (such as stack) has to be implemented and this is where
data structure comes into ply. For instance, we might choose the simple data structure of an
array to represent the stack, and then define the appropriate indexing operations to perform
pushing and popping.

1.4. Selecting a data structure to match the operation:

The most important process in designing a problem involves choosing which data structure to

use. The choice depends greatly on the type of operations you wish to perform.

Suppose we have an application that uses a sequence of objects, where one of the main
operations is delete an object from the middle of the sequence. The code for this is as follows:

void delete (int *seg, int &n, int posn)
// delete the item at position from an array of n elements.
{

if (n)

{

int i=posn;
n--;
while (i < n)
{

}
}
return;

}

seq[i] = seg[i+1];
i++;

This function shifts towards the front all elements that follow the element at position posn. This
shifting involves data movement that, for integer elements, which is too costly. However, suppose
the array stores larger objects, and lots of them. In this case, the overhead for moving data
becomes high. The problem is that, in a contiguous structure, such as an array the logical ordering
(the ordering that we wish to interpret our elements to have) is the same as the physical ordering
(the ordering that the elements actually have in memory).

If we choose non-contiguous representation, however we can separate the logical ordering from
the physical ordering and thus change one without affecting the other. For example, if we store
our collection of elements using a double–linked list (with previous and next pointers), we can
do the deletion without moving the elements, instead, we just modify the pointers in each node.
The code using double linked list is as follows:

void delete (node * beg, int posn)

//delete the item at posn from a list of elements.

{
int i = posn;
node *q = beg;
while (i && q)
{

i--;
q = q next;

}

if (q)

{ /* not at end of list, so detach P by making previous and
next nodes point to each other */

node *p = q -> prev;
node *n = q -> next;
if (p)

}
return;

}

if (n)

p -> next = n;

n -> prev = P;

The process of detecting a node from a list is independent of the type of data stored in the
node, and can be accomplished with some pointer manipulation as illustrated in figure below:

Figure 1.6 Detaching a node from a list

Since very little data is moved during this process, the deletion using linked lists will often be
faster than when arrays are used.

It may seem that linked lists are superior to arrays. But is that always true? There are trade offs.
Our linked lists yield faster deletions, but they take up more space because they require two
extra pointers per element.

1.5. Algorithm

An algorithm is a finite sequence of instructions, each of which has a clear meaning and can be
performed with a finite amount of effort in a finite length of time. No matter what the input values
may be, an algorithm terminates after executing a finite number of instructions. In addition every
algorithm must satisfy the following criteria:

Input: there are zero or more quantities, which are externally supplied;

Output: at least one quantity is produced;

A A

C A

Definiteness: each instruction must be clear and unambiguous;

Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will
terminate after a finite number of steps;

Effectiveness: every instruction must be sufficiently basic that it can in principle be carried out
by a person using only pencil and paper. It is not enough that each operation be definite, but it

must also be feasible.

In formal computer science, one distinguishes between an algorithm, and a program. A program
does not necessarily satisfy the fourth condition. One important example of such a program for
a computer is its operating system, which never terminates (except for system crashes) but
continues in a wait loop until more jobs are entered.

We represent an algorithm using pseudo language that is a combination of the constructs of a

programming language together with informal English statements.

1.6. Practical Algorithm design issues:

Choosing an efficient algorithm or data structure is just one part of the design process. Next, will
look at some design issues that are broader in scope. There are three basic design goals that we
should strive for in a program:

1. Try to save time (Time complexity).
2. Try to save space (Space complexity).

3. Try to have face.

A program that runs faster is a better program, so saving time is an obvious goal. Like wise, a
program that saves space over a competing program is considered desirable. We want to “save
face” by preventing the program from locking up or generating reams of garbled data.

1.7. Performance of a program:

The performance of a program is the amount of computer memory and time needed to run a
program. We use two approaches to determine the performance of a program. One is analytical,
and the other experimental. In performance analysis we use analytical methods, while in
performance measurement we conduct experiments.

Time Complexity:

The time needed by an algorithm expressed as a function of the size of a problem is called the

TIME COMPLEXITY of the algorithm. The time complexity of a program is the amount of
computer time it needs to run to completion.

The limiting behavior of the complexity as size increases is called the asymptotic time complexity.
It is the asymptotic complexity of an algorithm, which ultimately determines the size of problems
that can be solved by the algorithm.

Space Complexity:

The space complexity of a program is the amount of memory it needs to run to completion. The
space need by a program has the following components:

Instruction space: Instruction space is the space needed to store the compiled version of the
program instructions.

Data space: Data space is the space needed to store all constant and variable values. Data
space has two components:

 Space needed by constants and simple variables in program.
 Space needed by dynamically allocated objects such as arrays and class instances.

Environment stack space: The environment stack is used to save information needed to
resume execution of partially completed functions.

Instruction Space: The amount of instructions space that is needed depends on factors such
as:

 The compiler used to complete the program into machine code.
 The compiler options in effect at the time of compilation
 The target computer.

1.8. Classification of Algorithms

If ‘n’ is the number of data items to be processed or degree of polynomial or the size of the file

to be sorted or searched or the number of nodes in a graph etc.

1 Next instructions of most programs are executed once or at most only a few times.
If all the instructions of a program have this property, we say that its running time
is a constant.

Log n When the running time of a program is logarithmic, the program gets slightly slower
as n grows. This running time commonly occurs in programs that solve a big problem
by transforming it into a smaller problem, cutting the size by some constant fraction.,
When n is a million, log n is a doubled whenever n doubles, log n increases by a

constant, but log n does not double until n increases to n2.

n When the running time of a program is linear, it is generally the case that a small

amount of processing is done on each input element. This is the optimal situation for
an algorithm that must process n inputs.

n. log n This running time arises for algorithms but solve a problem by breaking it up into smaller

sub-problems, solving them independently, and then combining the solutions. When
n doubles, the running time more than doubles.

n2 When the running time of an algorithm is quadratic, it is practical for use only on
relatively small problems. Quadratic running times typically arise in algorithms that
process all pairs of data items (perhaps in a double nested loop) whenever n doubles,
the running time increases four fold.

n3 Similarly, an algorithm that process triples of data items (perhaps in a triple– nested

loop) has a cubic running time and is practical for use only on small problems.

Whenever n doubles, the running time increases eight fold.

2n Few algorithms with exponential running time are likely to be appropriate for
practical use, such algorithms arise naturally as “brute–force” solutions to problems.
Whenever n doubles, the running time squares.

1.9. Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time and/or storage
space requirement of the algorithm in terms of the size ‘n’ of the input data. Mostly, the storage
space required by an algorithm is simply a multiple of the data size ‘n’. Complexity shall refer to

the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size ‘n’ of the
input data but also on the particular data. The complexity function f(n) for certain cases are:

1. Best Case : The minimum possible value of f(n) is called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

The field of computer science, which studies efficiency of algorithms, is known as analysis of
algorithms.

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested in the rate
of growth of the time or space required to solve larger and larger instances of a problem. We will

associate with the problem an integer, called the size of the problem, which is a measure of the
quantity of input data.

1.10. Rate of Growth

Big–Oh (O), Big–Omega (), Big–Theta () and Little–Oh

1. T(n) = O(f(n)), (pronounced order of or big oh), says that the growth rate of T(n) is
less than or equal (<) that of f(n)

2. T(n) = (g(n)) (pronounced omega), says that the growth rate of T(n) is greater than

or equal to (>) that of g(n)

3. T(n) = (h(n)) (pronounced theta), says that the growth rate of T(n) equals (=) the
growth rate of h(n) [if T(n) = O(h(n)) and T(n) = (h(n)]

4. T(n) = o(p(n)) (pronounced little oh), says that the growth rate of T(n) is less than the

growth rate of p(n) [if T(n) = O(p(n)) and T(n) (p(n))].

Some Examples:

2n2 + 5n – 6 = O(2n)
2n2 + 5n – 6 = O(n3)
2n2 + 5n – 6 = O(n2)

2n2 + 5n – 6 O(n)

2n2 + 5n – 6 (2n)

2n2 + 5n – 6 (n3)
2n2 + 5n – 6 = (n2)

2n2 + 5n – 6 = (n)

2n2 + 5n – 6 (2n)

2n2 + 5n – 6 (n3)
2n2 + 5n – 6 = (n2)

2n2 + 5n – 6 (n)

2n2 + 5n – 6 = o(2n)
2n2 + 5n – 6 = o(n3)
2n2 + 5n – 6 o(n2)

2n2 + 5n – 6 o(n)

1.11. Analyzing Algorithms

Suppose ‘M’ is an algorithm, and suppose ‘n’ is the size of the input data. Clearly the complexity
f(n) of M increases as n increases. It is usually the rate of increase of f(n) we want to examine.
This is usually done by comparing f(n) with some standard functions. The most common

computing times are:

O(1), O(log2 n), O(n), O(n. log2 n), O(n2), O(n3), O(2n), n! and nn

Numerical Comparison of Different Algorithms

The execution time for six of the typical functions is given below:

S.No log n n n. log n n2 n3 2n

1 0 1 1 1 1 2

2 1 2 2 4 8 4

3 2 4 8 16 64 16

4 3 8 24 64 512 256

5 4 16 64 256 4096 65536

Graph of log n, n, n log n, n2, n3, 2n, n! and nn

O(log n) does not depend on the base of the logarithm. To simplify the analysis, the convention
will not have any particular units of time. Thus we throw away leading constants. We will also
throw away low–order terms while computing a Big–Oh running time. Since Big-Oh is an upper
bound, the answer provided is a guarantee that the program will terminate within a certain time
period. The program may stop earlier than this, but never later.

One way to compare the function f(n) with these standard function is to use the functional ‘O’
notation, suppose f(n) and g(n) are functions defined on the positive integers with the property
that f(n) is bounded by some multiple g(n) for almost all ‘n’. Then,

f(n) = O(g(n))

Which is read as “f(n) is of order g(n)”. For example, the order of complexity for:

 Linear search is O(n)
 Binary search is O(log n)
 Bubble sort is O(n2)
 Quick sort is O(n log n)

For example, if the first program takes 100n2 milliseconds. While the second taken 5n3

milliseconds. Then might not 5n3 program better than 100n2 program?

As the programs can be evaluated by comparing their running time functions, with constants by

proportionality neglected. So, 5n3 program be better than the 100n2 program.

5 n3/100 n2 = n/20

for inputs n < 20, the program with running time 5n3 will be faster those the one with running
time 100 n2.

Therefore, if the program is to be run mainly on inputs of small size, we would indeed prefer the
program whose running time was O(n3)

However, as ‘n’ gets large, the ratio of the running times, which is n/20, gets arbitrarily larger.
Thus, as the size of the input increases, the O(n3) program will take significantly more time than
the O(n2) program. So it is always better to prefer a program whose running time with the lower
growth rate. The low growth rate function’s such as O(n) or O(n log n) are always better.

Exercises

1. Define algorithm.

2. State the various steps in developing algorithms?

3. State the properties of algorithms.

4. Define efficiency of an algorithm?

5. State the various methods to estimate the efficiency of an algorithm.

6. Define time complexity of an algorithm?

7. Define worst case of an algorithm.

8. Define average case of an algorithm.

9. Define best case of an algorithm.

10. Mention the various spaces utilized by a program.

11. Define space complexity of an algorithm.

12. State the different memory spaces occupied by an algorithm.

Multiple Choice Questions

1. is a step-by-step recipe for solving an instance of problem. [A]

A. Algorithm
C. Pseudocode

B. Complexity
D. Analysis

2. is used to describe the algorithm, in less formal language. [C]
A. Cannot be defined
C. Pseudocode

B. Natural Language
D. None

3. of an algorithm is the amount of time (or the number of steps)

needed by a program to complete its task.

[D]

A. Space Complexity
C. Divide and Conquer

B. Dynamic Programming
D. Time Complexity

4. of a program is the amount of memory used at once by the

algorithm until it completes its execution.

[C]

A. Divide and Conquer
C. Space Complexity

B. Time Complexity
D. Dynamic Programming

5. is used to define the worst-case running time of an algorithm. [A]

A. Big-Oh notation
C. Complexity

B. Cannot be defined
D. Analysis

C. Mathematical induction. D. Matrix Multiplication.

Chapter

3
LINKED LISTS

In this chapter, the list data structure is presented. This structure can be used
as the basis for the implementation of other data structures (stacks, queues etc.).
The basic linked list can be used without modification in many programs.
However, some applications require enhancements to the linked list design.
These enhancements fall into three broad categories and yield variations on
linked lists that can be used in any combination: circular linked lists, double linked
lists and lists with header nodes.

Linked lists and arrays are similar since they both store collections of data. Array is the

most common data structure used to store collections of elements. Arrays are convenient
to declare and provide the easy syntax to access any element by its index number. Once
the array is set up, access to any element is convenient and fast. The disadvantages of
arrays are:

 The size of the array is fixed. Most often this size is specified at compile time.
This makes the programmers to allocate arrays, which seems "large enough"
than required.

 Inserting new elements at the front is potentially expensive because existing

elements need to be shifted over to make room.

 Deleting an element from an array is not possible.

Linked lists have their own strengths and weaknesses, but they happen to be strong
where arrays are weak. Generally array's allocates the memory for all its elements in one
block whereas linked lists use an entirely different strategy. Linked lists allocate memory
for each element separately and only when necessary.

Here is a quick review of the terminology and rules of pointers. The linked list code will
depend on the following functions:

malloc() is a system function which allocates a block of memory in the "heap" and
returns a pointer to the new block. The prototype of malloc() and other heap functions
are in stdlib.h. malloc() returns NULL if it cannot fulfill the request. It is defined by:

void *malloc (number_of_bytes)

Since a void * is returned the C standard states that this pointer can be converted to
any type. For example,

char *cp;
cp = (char *) malloc (100);

Attempts to get 100 bytes and assigns the starting address to cp. We can also use the
sizeof() function to specify the number of bytes. For example,

int *ip;
ip = (int *) malloc (100*sizeof(int));

free() is the opposite of malloc(), which de-allocates memory. The argument to free()
is a pointer to a block of memory in the heap — a pointer which was obtained by a
malloc() function. The syntax is:

free (ptr);

The advantage of free() is simply memory management when we no longer need a block.

3.1. Linked List Concepts:

A linked list is a non-sequential collection of data items. It is a dynamic data structure.
For every data item in a linked list, there is an associated pointer that would give the
memory location of the next data item in the linked list.

The data items in the linked list are not in consecutive memory locations. They may be
anywhere, but the accessing of these data items is easier as each data item contains the
address of the next data item.

Advantages of linked lists:

Linked lists have many advantages. Some of the very important advantages are:

1. Linked lists are dynamic data structures. i.e., they can grow or shrink during

the execution of a program.
2. Linked lists have efficient memory utilization. Here, memory is not pre-

allocated. Memory is allocated whenever it is required and it is de-allocated
(removed) when it is no longer needed.

3. Insertion and Deletions are easier and efficient. Linked lists provide flexibility
in inserting a data item at a specified position and deletion of the data item
from the given position.

4. Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:

1. It consumes more space because every node requires a additional pointer to
store address of the next node.

2. Searching a particular element in list is difficult and also time consuming.

3.2. Types of Linked Lists:

Basically we can put linked lists into the following four items:

1. Single Linked List.

2. Double Linked List.

3. Circular Linked List.

4. Circular Double Linked List.

A single linked list is one in which all nodes are linked together in some sequential
manner. Hence, it is also called as linear linked list.

A double linked list is one in which all nodes are linked together by multiple links which
helps in accessing both the successor node (next node) and predecessor node (previous
node) from any arbitrary node within the list. Therefore each node in a double linked list
has two link fields (pointers) to point to the left node (previous) and the right node (next).

This helps to traverse in forward direction and backward direction.

A circular linked list is one, which has no beginning and no end. A single linked list can
be made a circular linked list by simply storing address of the very first node in the link
field of the last node.

A circular double linked list is one, which has both the successor pointer and predecessor
pointer in the circular manner.

Comparison between array and linked list:

ARRAY LINKED LIST

Size of an array is fixed Size of a list is not fixed

Memory is allocated from stack Memory is allocated from heap

It is necessary to specify the number of

elements during declaration (i.e., during
compile time).

It is not necessary to specify the number

of elements during declaration (i.e.,
memory is allocated during run
time).

It occupies less memory than a linked
list for the same number of elements.

It occupies more memory.

Inserting new elements at the front is
potentially expensive because existing

elements need to be shifted over to
make room.

Inserting a new element at any position
can be carried out easily.

Deleting an element from an array is
not possible.

Deleting an element is possible.

Trade offs between linked lists and arrays:

FEATURE ARRAYS LINKED LISTS

Sequential access efficient efficient

Random access efficient inefficient

Resigning inefficient efficient

Element rearranging inefficient efficient

Overhead per elements none 1 or 2 links

Applications of linked list:

1. Linked lists are used to represent and manipulate polynomial. Polynomials are
expression containing terms with non zero coefficient and exponents. For

example:

P(x) = a0 X
n + a1 X

n-1 + …… + an-1 X + an

2. Represent very large numbers and operations of the large number such as
addition, multiplication and division.

3. Linked lists are to implement stack, queue, trees and graphs.

4. Implement the symbol table in compiler construction

3.3. Single Linked List:

A linked list allocates space for each element separately in its own block of memory called
a "node". The list gets an overall structure by using pointers to connect all its nodes
together like the links in a chain. Each node contains two fields; a "data" field to store
whatever element, and a "next" field which is a pointer used to link to the next node.
Each node is allocated in the heap using malloc(), so the node memory continues to
exist until it is explicitly de-allocated using free(). The front of the list is a pointer to the
“start” node.

A single linked list is shown in figure 3.2.1.

Figure 3.2.1. Single Linked List

The beginning of the linked list is stored in a "start" pointer which points to the first
node. The first node contains a pointer to the second node. The second node contains a
pointer to the third node, ... and so on. The last node in the list has its next field set to

NULL to mark the end of the list. Code can access any node in the list by starting at the
start and following the next pointers.

The start pointer is an ordinary local pointer variable, so it is drawn separately on the
left top to show that it is in the stack. The list nodes are drawn on the right to show that
they are allocated in the heap.

HEAP

Implementation of Single Linked List:

Before writing the code to build the above list, we need to create a start node, used to
create and access other nodes in the linked list. The following structure definition will do

(see figure 3.2.2):

 Creating a structure with one data item and a next pointer, which will be
pointing to next node of the list. This is called as self-referential structure.

 Initialise the start pointer to be NULL.

Figure 3.2.2. Structure definition, single link node and empty list

The basic operations in a single linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by using
the malloc() function. The function getnode(), is used for creating a node, after allocating

memory for the structure of type node, the information for the item (i.e., data) has to
be read from the user, set next field to NULL and finally returns the address of the node.
Figure 3.2.3 illustrates the creation of a node for single linked list.

Figure 3.2.3. new node with a value of 10

struct slinklist

{

int data;

struct slinklist* next;

};

typedef struct slinklist node;

node *start = NULL;

node* getnode()

{

node* newnode;

newnode = (node *) malloc(sizeof(node));

printf("\n Enter data: ");

scanf("%d", &newnode -> data);

newnode -> next = NULL;
return newnode;

}

Creating a Singly Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;

 If the list is not empty, follow the steps given below:

 The next field of the new node is made to point the first node (i.e.
start node) in the list by assigning the address of the first node.

 The start pointer is made to point the new node by assigning the

address of the new node.

 Repeat the above steps ‘n’ times.

Figure 3.2.4 shows 4 items in a single linked list stored at different locations in
memory.

Figure 3.2.4. Single Linked List with 4 nodes

The function createlist(), is used to create ‘n’ number of nodes:

vo id c re at e list(int n)
{

int i;
no de * ne w no de;
no de * t e m p;
for(i = 0 ; i < n ; i+ +)
{

ne w no de = get no de();
if(st a rt = = NU LL)
{

sta rt = ne w no de;
}
e ls e
{

te m p = st a rt;
w hile(t e m p - > ne xt ! = NU LL)

te m p = t e m p - > ne xt;
te m p - > ne xt = ne w no de;

}
}

}

Insertion of a Node:

One of the most primitive operations that can be done in a singly linked list is the insertion
of a node. Memory is to be allocated for the new node (in a similar way that is done while

creating a list) before reading the data. The new node will contain empty data field and
empty next field. The data field of the new node is then stored with the information read
from the user. The next field of the new node is assigned to NULL. The new node can
then be inserted at three different places namely:

 Inserting a node at the beginning.

 Inserting a node at the end.

 Inserting a node at intermediate position.

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

newnode -> next = start;
start = newnode;

Figure 3.2.5 shows inserting a node into the single linked list at the beginning.

Figure 3.2.5. Inserting a node at the beginning

The function insert_at_beg(), is used for inserting a node at the beginning

void insert_at_beg()
{

node *newnode;
newnode = getnode();
if(start == NULL)
{

}
else

{

}

}

start = newnode;

newnode -> next = start;
start = newnode;

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()
newnode = getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:
temp = start;

while(temp -> next != NULL)
temp = temp -> next;

temp -> next = newnode;

Figure 3.2.6 shows inserting a node into the single linked list at the end.

Figure 3.2.6. Inserting a node at the end.

The function insert_at_end(), is used for inserting a node at the end.

void insert_at_end()
{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{

}
else

{

}

}

start = newnode;

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

Inserting a node at intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

 Get the new node using getnode().
newnode = getnode();

 Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev pointers.

Then traverse the temp pointer upto the specified position followed by prev
pointer.

 After reaching the specified position, follow the steps given below:
prev -> next = newnode;
newnode -> next = temp;

 Let the intermediate position be 3.

Figure 3.2.7 shows inserting a node into the single linked list at a specified
intermediate position other than beginning and end.

Figure 3.2.7. Inserting a node at an intermediate position.

The function insert_at_mid(), is used for inserting a node in the intermediate position.

void insert_at_mid()
{

node *newnode, *temp, *prev;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > 1 && pos < nodectr)
{

temp = prev = start;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr++;

}

}
else

{

}

}

prev -> next = newnode;
newnode -> next = temp;

printf("position %d is not a middle position", pos);

Deletion of a node:

Another primitive operation that can be done in a singly linked list is the deletion of a
node. Memory is to be released for the node to be deleted. A node can be deleted from
the list from three different places namely.

 Deleting a node at the beginning.

 Deleting a node at the end.

 Deleting a node at intermediate position.

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;
start = start -> next;
free(temp);

Figure 3.2.8 shows deleting a node at the beginning of a single linked list.

Figure 3.2.8. Deleting a node at the beginning.

The function delete_at_beg(), is used for deleting the first node in the list.

void delete_at_beg()

{
node *temp;
if(start == NULL)
{

}

else
{

}

}

printf("\n No nodes are exist..");
return ;

temp = start;

start = temp -> next;
free(temp);
printf("\n Node deleted ");

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = prev = start;
while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}

prev -> next = NULL;
free(temp);

Figure 3.2.9 shows deleting a node at the end of a single linked list.

Figure 3.2.9. Deleting a node at the end.

The function delete_at_last(), is used for deleting the last node in the list.

void delete_at_last()
{

node *temp, *prev;
if(start == NULL)
{

}
else

{

printf("\n Empty List..");
return ;

temp = start;
prev = start;
while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}

prev -> next = NULL;
free(temp);
printf("\n Node deleted ");

}

}

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two node).

 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodectr)
{

temp = prev = start;

ctr = 1;
while(ctr < pos)
{

prev = temp;

temp = temp -> next;
ctr++;

}

prev -> next = temp -> next;
free(temp);
printf("\n node deleted..");

}

Figure 3.2.10 shows deleting a node at a specified intermediate position other than
beginning and end from a single linked list.

20 300

Figure 3.2.10. Deleting a node at an intermediate position.

The function delete_at_mid(), is used for deleting the intermediate node in the list.

void delete_at_mid()

{
int ctr = 1, pos, nodectr;
node *temp, *prev;
if(start == NULL)
{

}
else

{

printf("\n Empty List..");
return ;

printf("\n Enter position of node to delete: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
{

printf("\nThis node doesnot exist");
}

if(pos > 1 && pos < nodectr)

{
temp = prev = start;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr ++;

}

}
else

{

}

}
}

prev -> next = temp -> next;
free(temp);
printf("\n Node deleted..");

printf("\n Invalid position..");
getch();

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse (move) a linked list, node by node from

the first node, until the end of the list is reached. Traversing a list involves the following
steps:

 Assign the address of start pointer to a temp pointer.

 Display the information from the data field of each node.

The function traverse() is used for traversing and displaying the information stored in
the list from left to right.

Alternatively there is another way to traverse and display the information. That is in
reverse order. The function rev_traverse(), is used for traversing and displaying the
information stored in the list from right to left.

void traverse()

{

node *temp;

temp = start;

printf("\n The contents of List (Left to Right): \n");

if(start == NULL)
printf("\n Empty List");

else

{

while (temp != NULL)

{

printf("%d ->", temp -> data);

temp = temp -> next;
}

}

printf("X");

}

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list using recursion.

3.3.1. Source Code for the Implementation of Single Linked List:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct slinklist
{

int data;
struct slinklist *next;

};

typedef struct slinklist node;

node *start = NULL;
int menu()
{

int ch;
clrscr();
printf("\n 1.Create a list ");
printf("\n ------------------------- ");
printf("\n 2.Insert a node at beginning ");
printf("\n 3.Insert a node at end");
printf("\n 4.Insert a node at middle");
printf("\n ------------------------- ");
printf("\n 5.Delete a node from beginning");
printf("\n 6.Delete a node from Last");
printf("\n 7.Delete a node from Middle");
printf("\n ------------------------- ");
printf("\n 8.Traverse the list (Left to Right)");
printf("\n 9.Traverse the list (Right to Left)");

vo id re v_ t ra v e rs e(no de * st)
{

if(st = = NU LL)
{

ret urn;
}
e ls e
{

re v_ t ra v e rs e(st - > ne xt);
printf(" % d - >" , st - > dat a);

}
}

int co unt no de(no de * st)
{

if(st = = NU LL)
ret urn 0 ;

e ls e
ret urn(1 + co unt no de(st - > ne xt));

}

printf("\n ------------------------- ");

printf("\n 10. Count nodes ");
printf("\n 11. Exit ");
printf("\n\n Enter your choice: ");
scanf("%d",&ch);
return ch;

}

node* getnode()
{

node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

}

int countnode(node *ptr)
{

int count=0;
while(ptr != NULL)
{

count++;
ptr = ptr -> next;

}
return (count);

}

void createlist(int n)
{

int i;
node *newnode;
node *temp;
for(i = 0; i < n; i++)

{
newnode = getnode();
if(start == NULL)
{

}

else
{

}

}
}

start = newnode;

temp = start;

while(temp -> next != NULL)
temp = temp -> next;

temp -> next = newnode;

void traverse()
{

node *temp;
temp = start;
printf("\n The contents of List (Left to Right): \n");
if(start == NULL)
{

}

else
{

printf("\n Empty List");
return;

while(temp != NULL)

{
printf("%d-->", temp -> data);
temp = temp -> next;

}

}
printf(" X ");

}

void rev_traverse(node *start)
{

if(start == NULL)
{

}

else
{

}

}

return;

rev_traverse(start -> next);
printf("%d -->", start -> data);

void insert_at_beg()
{

node *newnode;
newnode = getnode();
if(start == NULL)
{

}
else

{

}

}

start = newnode;

newnode -> next = start;
start = newnode;

void insert_at_end()

{
node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{

}

else
{

}

}

start = newnode;

temp = start;

while(temp -> next != NULL)
temp = temp -> next;

temp -> next = newnode;

void insert_at_mid()
{

node *newnode, *temp, *prev;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);

nodectr = countnode(start);

if(pos > 1 && pos < nodectr)

{
temp = prev = start;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr++;

}

}
else

}

prev -> next = newnode;
newnode -> next = temp;

printf("position %d is not a middle position", pos);

void delete_at_beg()
{

node *temp;
if(start == NULL)
{

}
else

{

}

}

printf("\n No nodes are exist..");
return ;

temp = start;
start = temp -> next;
free(temp);
printf("\n Node deleted ");

void delete_at_last()
{

node *temp, *prev;
if(start == NULL)
{

}

else
{

printf("\n Empty List..");
return ;

temp = start;
prev = start;
while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;
free(temp);
printf("\n Node deleted ");

}

}

void delete_at_mid()
{

int ctr = 1, pos, nodectr;
node *temp, *prev;
if(start == NULL)
{

printf("\n Empty List..");

}
else
{

return ;

printf("\n Enter position of node to delete: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
{

printf("\nThis node doesnot exist");

}
if(pos > 1 && pos < nodectr)
{

temp = prev = start;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr ++;

}

}

else
{

}
}

}

prev -> next = temp -> next;
free(temp);
printf("\n Node deleted..");

printf("\n Invalid position..");
getch();

void main(void)
{

int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{
case 1:

if(start == NULL)
{

case 2:

}
else

printf("\n Number of nodes you want to create: ");
scanf("%d", &n);
createlist(n);

printf("\n List created..");

printf("\n List is already created..");
break;

case 3:

case 4:

insert_at_beg();
break;

insert_at_end();
break;

insert_at_mid();
break;

case 5:

case 6:

case 7:

case 8:

case 9:

delete_at_beg();
break;

delete_at_last();
break;

delete_at_mid();
break;

traverse();
break;

printf("\n The contents of List (Right to Left): \n");
rev_traverse(start);
printf(" X ");
break;

case 10:

printf("\n No of nodes : %d ", countnode(start));
break;

case 11 :
exit(0);

}
getch();

}

}

3.4. Using a header node:

A header node is a special dummy node found at the front of the list. The use of header
node is an alternative to remove the first node in a list. For example, the picture below
shows how the list with data 10, 20 and 30 would be represented using a linked list
without and with a header node:

Sing le Linke d List w it h o ut a he a d er no d e

Sing le Linke d List w it h he a d er no d e

Note that if your linked lists do include a header node, there is no need for the special
case code given above for the remove operation; node n can never be the first node in
the list, so there is no need to check for that case. Similarly, having a header node can
simplify the code that adds a node before a given node n.

Note that if you do decide to use a header node, you must remember to initialize an
empty list to contain one (dummy) node, you must remember not to include the header
node in the count of "real" nodes in the list.

It is also useful when information other than that found in each node of the list is needed.
For example, imagine an application in which the number of items in a list is often
calculated. In a standard linked list, the list function to count the number of nodes has
to traverse the entire list every time. However, if the current length is maintained in a
header node, that information can be obtained very quickly.

3.5. Array based linked lists:

Another alternative is to allocate the nodes in blocks. In fact, if you know the maximum
size of a list a head of time, you can pre-allocate the nodes in a single array. The result
is a hybrid structure – an array based linked list. Figure 3.5.1 shows an example of null
terminated single linked list where all the nodes are allocated contiguously in an array.

Figure 3.5.1. An array based linked list

3.6. Double Linked List:

A double linked list is a two-way list in which all nodes will have two links. This helps in
accessing both successor node and predecessor node from the given node position. It
provides bi-directional traversing. Each node contains three fields:

 Left link.
 Data.
 Right link.

The left link points to the predecessor node and the right link points to the successor
node. The data field stores the required data.

Many applications require searching forward and backward thru nodes of a list. For
example searching for a name in a telephone directory would need forward and
backward scanning thru a region of the whole list.

The basic operations in a double linked list are:

 Creation.
 Insertion.
 Deletion.
 Traversing.

300

A double linked list is shown in figure 3.3.1.

100 20 300

Figure 3.3.1. Double Linked List

The beginning of the double linked list is stored in a "start" pointer which points to the
first node. The first node’s left link and last node’s right link is set to NULL.

The following code gives the structure definition:

Figure 3.4.1. Structure definition, double link node and empty list

Creating a node for Double Linked List:

Creating a double linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by using
the malloc() function. The function getnode(), is used for creating a node, after allocating

memory for the structure of type node, the information for the item (i.e., data) has to
be read from the user and set left field to NULL and right field also set to NULL (see figure
3.2.2).

Figure 3.4.2. new node with a value of 10

left data right

X 10 X

struct dlinklist

{

struct dlinklist *left;

int data;
struct dlinklist *right;

};

typedef struct dlinklist node;

node *start = NULL;

node* getnode()

{

node* newnode;

newnode = (node *) malloc(sizeof(node));

printf("\n Enter data: ");

scanf("%d", &newnode -> data);

newnode -> left = NULL;

newnode -> right = NULL;

return newnode;

}

Creating a Double Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().

newnode =getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

 The left field of the new node is made to point the previous node.

 The previous nodes right field must be assigned with address of the
new node.

 Repeat the above steps ‘n’ times.

The function createlist(), is used to create ‘n’ number of nodes:

Figure 3.4.3 shows 3 items in a double linked list stored at different locations.

100 20 300

Figure 3.4.3. Double Linked List with 3 nodes

vo id c re at e list(int n)
{

int i;
no de * ne w no de;
no de * t e m p;
fo r(i = 0 ; i < n; i+ +)
{

ne w no de = get no de();
if(st a rt = = NU LL)
{

sta rt = ne w no de;
}
e ls e
{

te m p = st a rt;
w hile(t e m p - > right)

te m p = t e m p - > right;
te m p - > right = ne w no de;
ne w no de - > left = t e m p;

}
}

}

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

newnode -> right = start;
start -> left = newnode;
start = newnode;

The function dbl_insert_beg(), is used for inserting a node at the beginning. Figure
3.4.4 shows inserting a node into the double linked list at the beginning.

100 20 300

Figure 3.4.4. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:

temp = start;
while(temp -> right != NULL)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

The function dbl_insert_end(), is used for inserting a node at the end. Figure 3.4.5

shows inserting a node into the double linked list at the end.

X

 X

100 20 300

Figure 3.4.5. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

 Get the new node using getnode().

newnode=getnode();

 Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev pointers.
Then traverse the temp pointer upto the specified position followed by prev
pointer.

 After reaching the specified position, follow the steps given below:

newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;

The function dbl_insert_mid(), is used for inserting a node in the intermediate position.
Figure 3.4.6 shows inserting a node into the double linked list at a specified intermediate
position other than beginning and end.

start

400

100

200

300

Figure 3.4.6. Inserting a node at an intermediate position

30 X 200

300 20 400
400 10 X

100
200 40 100

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;
start = start -> right;
start -> left = NULL;

free(temp);

The function dbl_delete_beg(), is used for deleting the first node in the list. Figure
3.4.6 shows deleting a node at the beginning of a double linked list.

Figure 3.4.6. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:
 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below:

temp = start;
while(temp -> right != NULL)
{

temp = temp -> right;
}

temp -> left -> right = NULL;
free(temp);

The function dbl_delete_last(), is used for deleting the last node in the list. Figure 3.4.7
shows deleting a node at the end of a double linked list.

Figure 3.4.7. Deleting a node at the end

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two nodes).

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in between first node and last
node. If not, specified position is invalid.

 Then perform the following steps:

if(pos > 1 && pos < nodectr)
{

temp = start;

i = 1;
while(i < pos)
{

temp = temp -> right;
i++;

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");

}

The function delete_at_mid(), is used for deleting the intermediate node in the list. Figure
3.4.8 shows deleting a node at a specified intermediate position other than beginning

and end from a double linked list.

Figure 3.4.8 Deleting a node at an intermediate position

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse the list, node by node from the first
node, until the end of the list is reached. The function traverse_left_right() is used for
traversing and displaying the information stored in the list from left to right.

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;
while(temp != NULL)
{

print temp -> data;

temp = temp -> right;
}

Traversal and displaying a list (Right to Left):

To display the information from right to left, you have to traverse the list, node by node

from the first node, until the end of the list is reached. The function traverse_right_left()
is used for traversing and displaying the information stored in the list from right to left.
The following steps are followed, to traverse a list from right to left:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;
while(temp -> right != NULL)

temp = temp -> right;
while(temp != NULL)
{

print temp -> data;
temp = temp -> left;

}

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list (using recursion).

3.5. A Complete Source Code for the Implementation of Double Linked List:

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

struct dlinklist
{

struct dlinklist *left;
int data;
struct dlinklist *right;

};

typedef struct dlinklist node;
node *start = NULL;

int co untno de(no de * sta rt)
{

if(st a rt = = NU LL)
ret urn 0 ;

e ls e
ret urn(1 + co unt no de(st a rt - > right));

}

node* getnode()

{
node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

}

int countnode(node *start)
{

if(start == NULL)
return 0;

else

}

return 1 + countnode(start -> right);

int menu()
{

int ch;
clrscr();
printf("\n 1.Create");
printf("\n ----------------------------- ");

printf("\n 2. Insert a node at beginning ");
printf("\n 3. Insert a node at end");
printf("\n 4. Insert a node at middle");
printf("\n ----------------------------- ");
printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n ----------------------------- ");
printf("\n 8. Traverse the list from Left to Right ");
printf("\n 9. Traverse the list from Right to Left ");
printf("\n ----------------------------- ");
printf("\n 10.Count the Number of nodes in the list");
printf("\n 11.Exit ");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void createlist(int n)
{

int i;
node *newnode;
node *temp;
for(i = 0; i < n; i++)
{

newnode = getnode();
if(start == NULL)

start = newnode;
else

{

}

}
}

temp = start;
while(temp -> right)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

void traverse_left_to_right()

{
node *temp;
temp = start;
printf("\n The contents of List: ");
if(start == NULL)

printf("\n Empty List");
else

{
while(temp != NULL)
{

printf("\t %d ", temp -> data);
temp = temp -> right;

}
}

}
void traverse_right_to_left()
{

node *temp;
temp = start;
printf("\n The contents of List: ");
if(start == NULL)

printf("\n Empty List");
else

{

}

while(temp -> right != NULL)
temp = temp -> right;

while(temp != NULL)
{

printf("\t%d", temp -> data);
temp = temp -> left;

}
}
void dll_insert_beg()
{

node *newnode;
newnode = getnode();
if(start == NULL)

start = newnode;
else

{

}

}

newnode -> right = start;
start -> left = newnode;
start = newnode;

void dll_insert_end()
{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)

start = newnode;
else

{

}

}

temp = start;

w
h
i
l
e
(
t
e
m
p
-
>
r
i
g
h
t
!
=
N
U
L
L
)
t
e
m
p
=
t
e
m
p
-
>
r
i
g
h
t
;

t
e
m
p
-
>
r
i
g
h
t
=
n
e
w
n
o
d
e
;
n
e

wnode -> left = temp;

void dll_insert_mid()

{
node *newnode,*temp;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos - nodectr >= 2)
{

printf("\n Position is out of range..");
return;

}
if(pos > 1 && pos < nodectr)
{

temp = start;
while(ctr < pos - 1)
{

temp = temp -> right;
ctr++;

}

}
else

}

newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;

printf("position %d of list is not a middle position ", pos);

void dll_delete_beg()
{

node *temp;
if(start == NULL)
{

}
else

{

}

}

printf("\n Empty list");
getch();
return ;

temp = start;

start = start -> right;
start -> left = NULL;
free(temp);

void dll_delete_last()

{
node *temp;
if(start == NULL)
{

}
else

{

printf("\n Empty list");
getch();
return ;

temp = start;

while(temp ->
right != NULL)

temp = temp -> right;
temp -> left -> right = NULL;
free(temp);
temp = NULL;

}

}

void dll_delete_mid()
{

int i = 0, pos, nodectr;
node *temp;
if(start == NULL)
{

}
else

{

printf("\n Empty List");
getch();
return;

printf("\n Enter the position of the node to delete: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
{

printf("\nthis node does not exist");
getch();
return;

}

if(pos > 1 && pos < nodectr)
{

temp = start;
i = 1;
while(i < pos)
{

temp = temp -> right;
i++;

}

}
else
{

}
}

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");

printf("\n It is not a middle position..");
getch();

void main(void)

{
int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);
createlist(n);

printf("\n List created..");
break;

case 2 :
dll_insert_beg();
break;

case 3 :

dll_insert_end();
break;

case 4 :

dll_insert_mid();
break;

case 5 :

dll_delete_beg();
break;

case 6 :

dll_delete_last();
break;

case 7 :

dll_delete_mid();
break;

case 8 :

traverse_left_to_right();
break;

case 9 :

traverse_right_to_left();
break;

case 10 :

printf("\n Number of nodes: %d", countnode(start));
break;

case 11:

exit(0);
}
getch();

}

}

3.7. Circular Single Linked List:

It is just a single linked list in which the link field of the last node points back to the
address of the first node. A circular linked list has no beginning and no end. It is necessary
to establish a special pointer called start pointer always pointing to the first node of the
list. Circular linked lists are frequently used instead of ordinary linked list because many
operations are much easier to implement. In circular linked list no null pointers are used,
hence all pointers contain valid address.

A circular single linked list is shown in figure 3.6.1.

Figure 3.6.1. Circular Single Linked List

The basic operations in a circular single linked list are:

 Creation.
 Insertion.
 Deletion.
 Traversing.

Creating a circular single Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;

 If the list is not empty, follow the steps given below:

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

 Repeat the above steps ‘n’ times.

 newnode -> next = start;

The function createlist(), is used to create ‘n’ number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the
circular list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

 If the list is not empty, follow the steps given below:

last = start;
while(last -> next != start)

last = last -> next;
newnode -> next = start;
start = newnode;
last -> next = start;

The function cll_insert_beg(), is used for inserting a node at the beginning. Figure
3.6.2 shows inserting a node into the circular single linked list at the beginning.

Figure 3.6.2. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

 If the list is not empty follow the steps given below:

temp = start;

while(temp -> next != start)
temp = temp -> next;

temp -> next = newnode;
newnode -> next = start;

The function cll_insert_end(), is used for inserting a node at the end.

Figure 3.6.3 shows inserting a node into the circular single linked list at the end.

Figure 3.6.3 Inserting a node at the end.

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If the list is empty, display a message ‘Empty List’.

 If the list is not empty, follow the steps given below:

last = temp = start;
while(last -> next != start)

last = last -> next;

start = start -> next;
last -> next = start;

 After deleting the node, if the list is empty then start = NULL.

The function cll_delete_beg(), is used for deleting the first node in the list. Figure 3.6.4
shows deleting a node at the beginning of a circular single linked list.

Figure 3.6.4. Deleting a node at beginning.

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If the list is empty, display a message ‘Empty List’.

 If the list is not empty, follow the steps given below:

temp = start;
prev = start;
while(temp -> next != start)
{

prev = temp;
temp = temp -> next;

}

prev -> next = start;

 After deleting the node, if the list is empty then start = NULL.

The function cll_delete_last(), is used for deleting the last node in the list.

Figure 3.6.5 shows deleting a node at the end of a circular single linked list.

Figure 3.6.5. Deleting a node at the end.

Traversing a circular single linked list from left to right:

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;
do
{

printf("%d ", temp -> data);
temp = temp -> next;

} while(temp != start);

3.7.1. Source Code for Circular Single Linked List:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct cslinklist
{

int data;

struct cslinklist *next;
};

typedef struct cslinklist node;

node *start = NULL;

int nodectr;

node* getnode()

{
node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

}

int menu()

{
int ch;
clrscr();
printf("\n 1. Create a list ");
printf("\n\n ------------------------- ");
printf("\n 2. Insert a node at beginning ");
printf("\n 3. Insert a node at end");
printf("\n 4. Insert a node at middle");
printf("\n\n ------------------------- ");
printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n\n ------------------------- ");
printf("\n 8. Display the list");
printf("\n 9. Exit");
printf("\n\n ------------------------- ");

printf("\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void createlist(int n)
{

int i;
node *newnode;
node *temp;
nodectr = n;
for(i = 0; i < n ; i++)
{

newnode = getnode();
if(start == NULL)
{

}

else
{

}

}

start = newnode;

temp = start;

while(temp -> next != NULL)
temp = temp -> next;

temp -> next = newnode;

newnode ->next = start; /* last node is pointing to starting node */

}

void display()
{

node *temp;
temp = start;
printf("\n The contents of List (Left to Right): ");
if(start == NULL)

printf("\n Empty List");
else
{

do
{

printf("\t %d ", temp -> data);
temp = temp -> next;

} while(temp != start);
printf(" X ");

}

}

void cll_insert_beg()

{
node *newnode, *last;
newnode = getnode();
if(start == NULL)
{

}
else

{

}

start = newnode;
newnode -> next = start;

last = start;
while(last -> next != start)

last = last -> next;
newnode -> next = start;
start = newnode;
last -> next = start;

printf("\n Node inserted at beginning..");
nodectr++;

}

void cll_insert_end()
{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{

}
else
{

}

start = newnode;
newnode -> next = start;

temp = start;
while(temp -> next != start)

temp = temp -> next;
temp -> next = newnode;
newnode -> next = start;

printf("\n Node inserted at end..");
nodectr++;

}

void cll_insert_mid()
{

node *newnode, *temp, *prev;
int i, pos ;
newnode = getnode();

printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos > 1 && pos < nodectr)

{
temp = start;
prev = temp;
i = 1;
while(i < pos)
{

prev = temp;

temp = temp -> next;
i++;

}

prev -> next = newnode;

newnode -> next = temp;

}
else

{

}

}

nodectr++;

printf("\n Node inserted at middle..");

printf("position %d of list is not a middle position ", pos);

void cll_delete_beg()
{

node *temp, *last;
if(start == NULL)
{

}

else
{

}

}

printf("\n No nodes exist..");
getch();
return ;

last = temp = start;
while(last -> next != start)

last = last -> next;
start = start -> next;
last -> next = start;
free(temp);
nodectr--;

printf("\n Node deleted..");
if(nodectr == 0)

start = NULL;

void cll_delete_last()
{

node *temp,*prev;
if(start == NULL)
{

}
else

{

printf("\n No nodes exist..");
getch();
return ;

temp = start;
prev = start;
while(temp -> next != start)
{

prev = temp;
temp = temp -> next;

}

prev -> next = start;
free(temp);
nodectr--;
if(nodectr == 0)

start = NULL;
printf("\n Node deleted..");

}

}

void cll_delete_mid()

{
int i = 0, pos;

node *temp, *prev;

if(start == NULL)
{

}

else
{

printf("\n No nodes exist..");
getch();
return ;

printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodectr)
{

printf("\nThis node does not exist");
getch();
return;

}

if(pos > 1 && pos < nodectr)
{

temp=start;
prev = start;
i = 0;
while(i < pos - 1)
{

prev = temp;
temp = temp -> next ;
i++;

}

}
else

{

}
}

}

prev -> next = temp -> next;
free(temp);
nodectr--;

printf("\n Node Deleted..");

printf("\n It is not a middle position..");
getch();

void main(void)
{

int result;
int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
if(start == NULL)
{

printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);
createlist(n);
printf("\nList created..");

}

else

break;
case 2 :

printf("\n List is already Exist..");

cll_insert_beg();
break;

case 3 :
cll_insert_end();
break;

case 4 :

cll_insert_mid();
break;

case 5 :

cll_delete_beg();
break;

case 6 :

cll_delete_last();
break;

case 7 :

cll_delete_mid();
break;

case 8 :

display();
break;

case 9 :

exit(0);
}
getch();

}
}

3.8. Circular Double Linked List:

A circular double linked list has both successor pointer and predecessor pointer in circular
manner. The objective behind considering circular double linked list is to simplify the
insertion and deletion operations performed on double linked list. In circular double linked
list the right link of the right most node points back to the start node and left link of the
first node points to the last node. A circular double linked list is shown in figure 3.8.1.

Figure 3.8.1. Circular Double Linked List

The basic operations in a circular double linked list are:

 Creation.

 Insertion.
 Deletion.
 Traversing.

Creating a Circular Double Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty, then do the following

start = newnode;
newnode -> left = start;
newnode ->right = start;

 If the list is not empty, follow the steps given below:

newnode -> left = start -> left;
newnode -> right = start;

start -> left->right = newnode;
start -> left = newnode;

 Repeat the above steps ‘n’ times.

The function cdll_createlist(), is used to create ‘n’ number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().
newnode=getnode();

 If the list is empty, then

start = newnode;
newnode -> left = start;

newnode -> right = start;

 If the list is not empty, follow the steps given below:
newnode -> left = start -> left;
newnode -> right = start;
start -> left -> right = newnode;
start -> left = newnode;
start = newnode;

The function cdll_insert_beg(), is used for inserting a node at the beginning. Figure
3.8.2 shows inserting a node into the circular double linked list at the beginning.

Figure 3.8.2. Inserting a node at the beginning

40 100 300

400

400 30 200

300

20 300 200 100

200

400 10

100

start

400

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()
newnode=getnode();

 If the list is empty, then

start = newnode;
newnode -> left = start;
newnode -> right = start;

 If the list is not empty follow the steps given below:

newnode -> left = start -> left;
newnode -> right = start;

start -> left -> right = newnode;
start -> left = newnode;

The function cdll_insert_end(), is used for inserting a node at the end. Figure 3.8.3
shows inserting a node into the circular linked list at the end.

Figure 3.8.3. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the

list:

 Get the new node using getnode().
newnode=getnode();

 Ensure that the specified position is in between first node and last node. If

not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp. Then traverse
the temp pointer upto the specified position.

 After reaching the specified position, follow the steps given below:

newnode -> left = temp;
newnode -> right = temp -> right;

temp -> right -> left = newnode;
temp -> right = newnode;
nodectr++;

100 40 300

400

400 200 30

300

300 20 200 100

200

400 10

100

start

100

The function cdll_insert_mid(), is used for inserting a node in the intermediate position.
Figure 3.8.4 shows inserting a node into the circular double linked list at a specified
intermediate position other than beginning and end.

Figure 3.8.4. Inserting a node at an intermediate position

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;

start = start -> right;

temp -> left -> right = start;
start -> left = temp -> left;

The function cdll_delete_beg(), is used for deleting the first node in the list. Figure
3.8.5 shows deleting a node at the beginning of a circular double linked list.

300 10 200

Figure 3.8.5. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below:

100 30 200

300

20 300 400

200

300 10 400

100

200 40 100

400

start

100

temp = start;
while(temp -> right != start)
{

temp = temp -> right;
}

temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;

The function cdll_delete_last(), is used for deleting the last node in the list. Figure
3.8.6 shows deleting a node at the end of a circular double linked list.

200

30

100

Figure 3.8.6. Deleting a node at the end

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two node).

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in between first node and last
node. If not, specified position is invalid.

 Then perform the following steps:

if(pos > 1 && pos < nodectr)

{

temp = start;
i = 1;
while(i < pos)
{

temp = temp -> right ;
i++;

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");
nodectr--;

}

The function cdll_delete_mid(), is used for deleting the intermediate node in the list.

Figure 3.8.7 shows deleting a node at a specified intermediate position other than
beginning and end from a circular double linked list.

Figure 3.8.7. Deleting a node at an intermediate position

Traversing a circular double linked list from left to right:

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:
temp = start;
Print temp -> data;

temp = temp -> right;
while(temp != start)
{

print temp -> data;
temp = temp -> right;

}

The function cdll_display_left _right(), is used for traversing from left to right.

Traversing a circular double linked list from right to left:

The following steps are followed, to traverse a list from right to left:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:
temp = start;
do
{

temp = temp -> left;

print temp -> data;
} while(temp != start);

The function cdll_display_right_left(), is used for traversing from right to left.

3.8.1. Source Code for Circular Double Linked List:

include <stdio.h>
include <stdlib.h>
include <conio.h>

struct cdlinklist

{
struct cdlinklist *left;
int data;
struct cdlinklist *right;

};

typedef struct cdlinklist node;
node *start = NULL;
int nodectr;

node* getnode()
{

node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

}

int menu()
{

int ch;
clrscr();
printf("\n 1. Create ");
printf("\n\n ------------------------- ");

printf("\n 2. Insert a node at Beginning");
printf("\n 3. Insert a node at End");
printf("\n 4. Insert a node at Middle");
printf("\n\n ------------------------- ");
printf("\n 5. Delete a node from Beginning");
printf("\n 6. Delete a node from End");
printf("\n 7. Delete a node from Middle");
printf("\n\n ------------------------- ");
printf("\n 8. Display the list from Left to Right");
printf("\n 9. Display the list from Right to Left");
printf("\n 10.Exit");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void cdll_createlist(int n)

{
int i;
node *newnode, *temp;
if(start == NULL)
{

nodectr = n;
for(i = 0; i < n; i++)
{

newnode = getnode();
if(start == NULL)
{

}
else

{

start = newnode;
newnode -> left = start;
newnode ->right = start;

newnode -> left = start -> left;

}

}
else

newnode -> right = start;

start -> left->right = newnode;
start -> left = newnode;

}

printf("\n List already exists..");

}

void cdll_display_left_right()

{
node *temp;
temp = start;
if(start == NULL)

printf("\n Empty List");
else
{

printf("\n The contents of List: ");
printf(" %d ", temp -> data);
temp = temp -> right;
while(temp != start)
{

printf(" %d ", temp -> data);
temp = temp -> right;

}
}

}

void cdll_display_right_left()
{

node *temp;
temp = start;
if(start == NULL)

printf("\n Empty List");

else
{

printf("\n The contents of List: ");
do
{

temp = temp -> left;
printf("\t%d", temp -> data);

} while(temp != start);
}

}

void cdll_insert_beg()
{

node *newnode;
newnode = getnode();
nodectr++;
if(start == NULL)
{

}
else

{

start = newnode;
newnode -> left = start;
newnode -> right = start;

newnode -> left = start -> left;
newnode -> right = start;
start -> left -> right = newnode;
start -> left = newnode;

start = newnode;

}
}

void cdll_insert_end()

{
node *newnode,*temp;
newnode = getnode();
nodectr++;
if(start == NULL)
{

}
else
{

}

start = newnode;
newnode -> left = start;
newnode -> right = start;

newnode -> left = start -> left;
newnode -> right = start;
start -> left -> right = newnode;
start -> left = newnode;

printf("\n Node Inserted at End");

}

void cdll_insert_mid()
{

node *newnode, *temp, *prev;
int pos, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos - nodectr >= 2)
{

printf("\n Position is out of range..");
return;

}
if(pos > 1 && pos <= nodectr)
{

temp = start;
while(ctr < pos - 1)
{

temp = temp -> right;
ctr++;

}

}
else

}

}

newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;
nodectr++;
printf("\n Node Inserted at Middle.. ");

printf("position %d of list is not a middle position", pos);

void cdll_delete_beg()

{
node *temp;
if(start == NULL)
{

printf("\n No nodes exist..");

}
else

{

getch();
return ;

nodectr--;
if(nodectr == 0)
{

}

else
{

}

free(start);
start = NULL;

temp = start;
start = start -> right;

temp -> left -> right = start;
start -> left = temp -> left;
free(temp);

printf("\n Node deleted at Beginning..");
}

}

void cdll_delete_last()
{

node *temp;
if(start == NULL)
{

}
else

{

printf("\n No nodes exist..");
getch();
return;

nodectr--;
if(nodectr == 0)
{

}
else

{

}

free(start);
start = NULL;

temp = start;

while(temp -> right != start)
temp = temp -> right;

temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;
free(temp);

printf("\n Node deleted from end ");
}

}

void cdll_delete_mid()
{

int ctr = 1, pos;
node *temp;
if(start == NULL)

{
printf("\n No nodes exist..");
getch();
return;

}

else

{

printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodectr)

{
printf("\nThis node does not exist");
getch();
return;

}
if(pos > 1 && pos < nodectr)

{
temp = start;
while(ctr < pos)
{

temp = temp -> right ;
ctr++;

}

}
else

{

}
}

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");
nodectr--;

printf("\n It is not a middle position..");
getch();

void main(void)
{

int ch,n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);
cdll_createlist(n);
printf("\n List created..");
break;

case 2 :
cdll_insert_beg();
break;

case 3 :

cdll_insert_end();
break;

case 4 :

cdll_insert_mid();
break;

case 5 :

cdll_delete_beg();
break;

case 6 :

cdll_delete_last();
break;

case 7 :

cdll_delete_mid();
break;

case 8 :

cdll_display_left_right();
break;

case 9 :

cdll_display_right_left();
break;

case 10:
exit(0);

}
getch();

}

}

3.9. Comparison of Linked List Variations:

The major disadvantage of doubly linked lists (over singly linked lists) is that they require
more space (every node has two pointer fields instead of one). Also, the code to
manipulate doubly linked lists needs to maintain the prev fields as well as the next fields;
the more fields that have to be maintained, the more chance there is for errors.

The major advantage of doubly linked lists is that they make some operations (like the
removal of a given node, or a right-to-left traversal of the list) more efficient.

The major advantage of circular lists (over non-circular lists) is that they eliminate some
extra-case code for some operations (like deleting last node). Also, some applications
lead naturally to circular list representations. For example, a computer network might
best be modeled using a circular list.

3.10. Polynomials:

A polynomial is of the form:

 ci x i
i 0

Where, ci is the coefficient of the ith term and

n is the degree of the polynomial

Some examples are:

5x2 + 3x + 1
12x3 – 4x
5x4 – 8x3 + 2x2 + 4x1 + 9x0

It is not necessary to write terms of the polynomials in decreasing order of degree. In
other words the two polynomials 1 + x and x + 1 are equivalent.

The computer implementation requires implementing polynomials as a list of pairs of
coefficient and exponent. Each of these pairs will constitute a structure, so a polynomial
will be represented as a list of structures. A linked list structure that represents
polynomials 5x4 – 8x3 + 2x2 + 4x1 + 9x0 illustrates in figure 3.10.1.

n

Coefficient Exponent

9 0 X

Figure 3.10.1. Single Linked List for the polynomial F(x) = 5x4 – 8x3 + 2x2 + 4x1 + 9x0

3.10.1. Source code for polynomial creation with help of linked list:

#include <conio.h>
#include <stdio.h>
#include <malloc.h>

struct link
{

float coef;
int expo;
struct link *next;

};

typedef struct link node;
node * getnode()
{

node *tmp;

tmp =(node *) malloc(sizeof(node));
printf("\n Enter Coefficient : ");
fflush(stdin);
scanf("%f",&tmp->coef);
printf("\n Enter Exponent : ");
fflush(stdin);
scanf("%d",&tmp->expo);
tmp->next = NULL;
return tmp;

}
node * create_poly (node *p)
{

char ch;

node *temp,*newnode;
while(1)
{

printf ("\n Do U Want polynomial node (y/n): ");
ch = getche();
if(ch == 'n')

break;
newnode = getnode();
if(p == NULL)

p = newnode;
else

{

}

}

temp = p;

while(temp->next != NULL)
temp = temp->next;

temp->next = newnode;

return p;

}

void display (node *p)

{
node *t = p;
while (t != NULL)
{

}

}

void main()
{

printf("+ %.2f", t -> coef);
printf("X^ %d", t -> expo);
t =t -> next;

node *poly1 = NULL ,*poly2 = NULL,*poly3=NULL;
clrscr();
printf("\nEnter First Polynomial..(in ascending-order of exponent)");
poly1 = create_poly (poly1);
printf("\nEnter Second Polynomial..(in ascending-order of exponent)");
poly2 = create_poly (poly2);
clrscr();

printf("\n Enter Polynomial 1: ");
display (poly1);
printf("\n Enter Polynomial 2: ");
display (poly2);
getch();

}

3.10.2. Addition of Polynomials:

To add two polynomials we need to scan them once. If we find terms with the same
exponent in the two polynomials, then we add the coefficients; otherwise, we copy the

term of larger exponent into the sum and go on. When we reach at the end of one of the
polynomial, then remaining part of the other is copied into the sum.

To add two polynomials follow the following steps:

 Read two polynomials.
 Add them.

 Display the resultant polynomial.

3.10.3. Source code for polynomial addition with help of linked list:

#include <conio.h>
#include <stdio.h>
#include <malloc.h>

struct link
{

float coef;
int expo;
struct link *next;

};

typedef struct link node;

node * getnode()
{

node *tmp;

tmp =(node *) malloc(sizeof(node));
printf("\n Enter Coefficient : ");
fflush(stdin);
scanf("%f",&tmp->coef);
printf("\n Enter Exponent : ");
fflush(stdin);
scanf("%d",&tmp->expo);
tmp->next = NULL;
return tmp;

}

node * create_poly (node *p)
{

char ch;

node *temp,*newnode;
while(1)
{

printf ("\n Do U Want polynomial node (y/n): ");
ch = getche();
if(ch == 'n')

break;
newnode = getnode();
if(p == NULL)

p = newnode;
else

{

}

}
return p;

}

temp = p;
while(temp->next != NULL)

temp = temp->next;
temp->next = newnode;

void display (node *p)
{

node *t = p;
while (t != NULL)
{

printf("+ %.2f", t -> coef);
printf("X^ %d", t -> expo);
t = t -> next;

}

}

void add_poly(node *p1,node *p2)

{

node *newnode;
while(1)
{

if(p1 == NULL || p2 == NULL)
break;

if(p1->expo == p2->expo)
{

}
else

{

printf("+ %.2f X ^%d",p1->coef+p2->coef,p1->expo);
p1 = p1->next; p2 = p2->next;

if(p1->expo < p2->expo)

{

}
else

{

}
}

}

printf("+ %.2f X ^%d",p1->coef,p1->expo);
p1 = p1->next;

printf(" + %.2f X ^%d",p2->coef,p2->expo);
p2 = p2->next;

while(p1 != NULL)
{

printf("+ %.2f X ^%d",p1->coef,p1->expo);
p1 = p1->next;

}
while(p2 != NULL)

{

printf("+ %.2f X ^%d",p2->coef,p2->expo);
p2 = p2->next;

}

}

void main()

{

}

node *poly1 = NULL ,*poly2 = NULL,*poly3=NULL;
clrscr();
printf("\nEnter First Polynomial..(in ascending-order of exponent)");
poly1 = create_poly (poly1);
printf("\nEnter Second Polynomial..(in ascending-order of exponent)");
poly2 = create_poly (poly2);
clrscr();
printf("\n Enter Polynomial 1: ");
display (poly1);
printf("\n Enter Polynomial 2: ");
display (poly2);
printf("\n Resultant Polynomial : ");
add_poly(poly1, poly2);
display (poly3);
getch();

Exercise

1. Write a “C” functions to split a given list of integers represented by a single linked
list into two lists in the following way. Let the list be L = (l0, l1, ….., ln). The

resultant lists would be R1 = (l0, l2, l4, …..) and R2 = (l1, l3, l5, …..).

2. Write a “C” function to insert a node “t” before a node pointed to by “X” in a single
linked list “L”.

3. Write a “C” function to delete a node pointed to by “p” from a single linked list “L”.

4. Suppose that an ordered list L = (l0, l1, …..,ln) is represented by a single linked
list. It is required to append the list L = (ln, l0, l1, ….., ln) after another ordered list
M represented by a single linked list.

5. Implement the following function as a new function for the linked list
toolkit.

Precondition: head_ptr points to the start of a linked list. The list might

be empty or it might be non-empty.

Postcondition: The return value is the number of occurrences of 42 in
the data field of a node on the linked list. The list itself is unchanged.

6. Implement the following function as a new function for the linked list

toolkit.

Precondition: head_ptr points to the start of a linked list. The list might
be empty or it might be non-empty.

Postcondition: The return value is true if the list has at least one
occurrence of the number 42 in the data part of a node.

7. Implement the following function as a new function for the linked list
toolkit.

Precondition: head_ptr points to the start of a linked list. The list might
be empty or it might be non-empty.

Postcondition: The return value is the sum of all the data components of
all the nodes. NOTE: If the list is empty, the function returns 0.

8. Write a “C” function to concatenate two circular linked lists producing another

circular linked list.

9. Write “C” functions to compute the following operations on polynomials
represented as singly connected linked list of nonzero terms.

1. Evaluation of a polynomial
2. Multiplication of two polynomials.

10. Write a “C” function to represent a sparse matrix having “m” rows and “n”

columns using linked list.

11. Write a “C” function to print a sparse matrix, each row in one line of output and
properly formatted, with zero being printed in place of zero elements.

12. Write “C” functions to:

1. Add two m X n sparse matrices and
2. Multiply two m X n sparse matrices.

Where all sparse matrices are to be represented by linked lists.

13. Consider representing a linked list of integers using arrays. Write a “C” function

to delete the ith node from the list.

Multiple Choice Questions

1. Which among the following is a linear data structure: [D]
A. Queue

B. Stack

C. Linked List

D. all the above

2. Which among the following is a dynamic data structure:
A. Double Linked List C. Stack

B. Queue D. all the above

[A]

3. The link field in a node contains:
A. address of the next node C. data of next node

B. data of previous node D. data of current node

[A]

4. Memory is allocated dynamically to a data structure during execution
by ------- function.

[D]

A. malloc()

B. Calloc()

C. realloc()

D. all the above

5. How many null pointer/s exist in a circular double linked list? [D]

A. 1
B. 2

C. 3
D. 0

[]

6. Suppose that p is a pointer variable that contains the NULL pointer.
What happens if your program tries to read or write *p?
A. A syntax error always occurs at compilation time.
B. A run-time error always occurs when *p is evaluated.
C. A run-time error always occurs when the program finishes.
D. The results are unpredictable.

7. What kind of list is best to answer questions such as: "What is the

item at position n?"
A. Lists implemented with an array.
B. Doubly-linked lists.
C. Singly-linked lists.
D. Doubly-linked or singly-linked lists are equally best.

[A]

8. In a single linked list which operation depends on the length of the list. [A]
A. Delete the last element of the list
B. Add an element before the first element of the list
C. Delete the first element of the list

D. Interchange the first two elements of the list

9. A double linked list is declared as follows:
struct dllist
{

[A]

struct dllist *fwd, *bwd;
int data;

}
Where fwd and bwd represents forward and backward links to adjacent
elements of the list. Which among the following segments of code
deletes the element pointed to by X from the double linked list, if it is
assumed that X points to neither the first nor last element of the list?

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd

C. X -> bwd -> bwd = X -> fwd;
X -> fwd -> fwd = X -> bwd

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd

10. Which among the following segment of code deletes the element
pointed to by X from the double linked list, if it is assumed that X
points to the first element of the list and start pointer points to
beginning of the list?
A. X -> bwd = X -> fwd;

X -> fwd = X -> bwd
B. start = X -> fwd;

start -> bwd = NULL;
C. start = X -> fwd;

X -> fwd = NULL
D. X -> bwd -> bwd = X -> bwd;

X -> fwd -> fwd = X -> fwd

[B]

11. Which among the following segment of code deletes the element
pointed to by X from the double linked list, if it is assumed that X
points to the last element of the list?

[C]

A. X -> fwd -> bwd = NULL;
B. X -> bwd -> fwd = X -> bwd;
C. X -> bwd -> fwd = NULL;

D. X -> fwd -> bwd = X -> bwd;

12. Which among the following segment of code counts the number of
elements in the double linked list, if it is assumed that X points to the
first element of the list and ctr is the variable which counts the number
of elements in the list?
A. for (ctr=1; X != NULL; ctr++)

[A]

X = X -> fwd;

B. for (ctr=1; X != NULL; ctr++)

X = X -> bwd;
C. for (ctr=1; X -> fwd != NULL; ctr++)

X = X -> fwd;
D. for (ctr=1; X -> bwd != NULL; ctr++)

X = X -> bwd;

13. Which among the following segment of code counts the number of

elements in the double linked list, if it is assumed that X points to the
last element of the list and ctr is the variable which counts the number
of elements in the list?
A. for (ctr=1; X != NULL; ctr++)

X = X -> fwd;
B. for (ctr=1; X != NULL; ctr++)

X = X -> bwd;

C. for (ctr=1; X -> fwd != NULL; ctr++)
X = X -> fwd;

D. for (ctr=1; X -> bwd != NULL; ctr++)
X = X -> bwd;

[B]

14. Which among the following segment of code inserts a new node
pointed by X to be inserted at the beginning of the double linked list.
The start pointer points to beginning of the list?

A. X -> bwd = X -> fwd;
X -> fwd = X -> bwd;

B. X -> fwd = start;
start -> bwd = X;
start = X;

C. X -> bwd = X -> fwd;
X -> fwd = X -> bwd;
start = X;

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd

15. Which among the following segments of inserts a new node pointed by
X to be inserted at the end of the double linked list. The start and last
pointer points to beginning and end of the list respectively?

[B]

[C]

A. X -> bwd = X -> fwd;
X -> fwd = X -> bwd

B. X -> fwd = start;
start -> bwd = X;

C. last -> fwd = X;
X -> bwd = last;

D. X -> bwd = X -> bwd;
X -> fwd = last;

16. Which among the following segments of inserts a new node pointed by
X to be inserted at any position (i.e neither first nor last) element of
the double linked list? Assume temp pointer points to the previous

position of new node.

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd

C. temp -> fwd = X;

temp -> bwd = X -> fwd;
X ->fwd = x
X ->fwd->bwd = temp

D. X -> bwd = temp;

X -> fwd = temp -> fwd;
temp ->fwd = X;
X -> fwd -> bwd = X;

[D]

17. A single linked list is declared as follows:
struct sllist
{

[A]

struct sllist *next;
int data;

}

Where next represents links to adjacent elements of the list.

Which among the following segments of code deletes the element
pointed to by X from the single linked list, if it is assumed that X
points to neither the first nor last element of the list? prev pointer
points to previous element.

A. prev -> next = X -> next;

free(X);
B. X -> next = prev-> next;

free(X);

C. prev -> next = X -> next;
free(prev);

D. X -> next = prev -> next;
free(prev);

18. Which among the following segment of code deletes the element
pointed to by X from the single linked list, if it is assumed that X
points to the first element of the list and start pointer points to
beginning of the list?

A. X = start -> next;

free(X);
B. start = X -> next;

free(X);

C. start = start -> next;
free(start);

D. X = X -> next;
start = X;
free(start);

19. Which among the following segment of code deletes the element

pointed to by X from the single linked list, if it is assumed that X
points to the last element of the list and prev pointer points to last but
one element?

A. prev -> next = NULL;
free(prev);

B. X -> next = NULL;
free(X);

C. prev -> next = NULL;
free(X);

D X -> next = prev;
free(prev);

[B]

[C]

20. Which among the following segment of code counts the number of
elements in the single linked list, if it is assumed that X points to the
first element of the list and ctr is the variable which counts the number
of elements in the list?

A. for (ctr=1; X != NULL; ctr++)

X = X -> next;
B. for (ctr=1; X != NULL; ctr--)

X = X -> next;
C. for (ctr=1; X -> next != NULL; ctr++)

X = X -> next;
D. for (ctr=1; X -> next != NULL; ctr--)

X = X -> next;

21. Which among the following segment of code inserts a new node
pointed by X to be inserted at the beginning of the single linked list.
The start pointer points to beginning of the list?

A. start -> next = X;
X = start;

B. X -> next = start;
start = X

C. X -> next = start -> next;
start = X

D. X -> next = start;
start = X -> next

22. Which among the following segments of inserts a new node pointed by

X to be inserted at the end of the single linked list. The start and last
pointer points to beginning and end of the list respectively?

A. last -> next = X;

X -> next = start;
B. X -> next = last;

last ->next = NULL;
C. last -> next = X;

X -> next = NULL;
D. last -> next = X -> next;

X -> next = NULL;

23. Which among the following segments of inserts a new node pointed by
X to be inserted at any position (i.e neither first nor last) element of
the single linked list? Assume prev pointer points to the previous
position of new node.

A. X -> next = prev -> next;

prev -> next = X -> next;
B. X = prev -> next;

prev -> next = X -> next;

C. X -> next = prev;
prev -> next = X;

D. X -> next = prev -> next;

prev -> next = X;

[A]

[B]

[C]

[D]

24. A circular double linked list is declared as follows:
struct cdllist
{

[A]

struct cdllist *fwd, *bwd;
int data;

}

Where fwd and bwd represents forward and backward links to adjacent
elements of the list.

Which among the following segments of code deletes the element
pointed to by X from the circular double linked list, if it is assumed
that X points to neither the first nor last element of the list?

A. X -> bwd -> fwd = X -> fwd;

X -> fwd -> bwd = X -> bwd;
B. X -> bwd -> fwd = X -> bwd;

X -> fwd -> bwd = X -> fwd;

C. X -> bwd -> bwd = X -> fwd;
X -> fwd -> fwd = X -> bwd;

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd;

25. Which among the following segment of code deletes the element
pointed to by X from the circular double linked list, if it is assumed
that X points to the first element of the list and start pointer points to
beginning of the list?

A. start = start -> bwd;

X -> bwd -> bwd = start;
start -> bwd = X -> bwd;

B. start = start -> fwd;

X -> fwd -> fwd = start;
start -> bwd = X -> fwd

C. start = start -> bwd;
X -> bwd -> fwd = X;
start -> bwd = X -> bwd

D. start = start -> fwd;
X -> bwd -> fwd = start;

start -> bwd = X -> bwd;

26. Which among the following segment of code deletes the element
pointed to by X from the circular double linked list, if it is assumed
that X points to the last element of the list and start pointer points to
beginning of the list?

A. X -> bwd -> fwd = X -> fwd;

X -> fwd -> fwd= X -> bwd;
B. X -> bwd -> fwd = X -> fwd;

X -> fwd -> bwd = X -> bwd;
C. X -> fwd -> fwd = X -> bwd;

X -> fwd -> bwd= X -> fwd;

D. X -> bwd -> bwd = X -> fwd;
X -> bwd -> bwd = X -> bwd;

[D]

[B]

27. Which among the following segment of code counts the number of
elements in the circular double linked list, if it is assumed that X and
start points to the first element of the list and ctr is the variable which
counts the number of elements in the list?

A. for (ctr=1; X->fwd != start; ctr++)
X = X -> fwd;

B. for (ctr=1; X != NULL; ctr++)
X = X -> bwd;

C. for (ctr=1; X -> fwd != NULL; ctr++)
X = X -> fwd;

D. for (ctr=1; X -> bwd != NULL; ctr++)

X = X -> bwd;

28. Which among the following segment of code inserts a new node
pointed by X to be inserted at the beginning of the circular double
linked list. The start pointer points to beginning of the list?

[A]

[B]

A. X -> bwd = start;

X -> fwd = start -> fwd;
start -> bwd-> fwd = X;
start -> bwd = X;
start = X

B. X -> bwd = start -> bwd;

X -> fwd = start;
start -> bwd-> fwd = X;
start -> bwd = X;
start = X

C. X -> fwd = start -> bwd;
X -> bwd = start;

start -> bwd-> fwd = X;
start -> bwd = X;
start = X

D. X -> bwd = start -> bwd;

X -> fwd = start;

start -> fwd-> fwd = X;
start -> fwd = X;
X = start;

29. Which among the following segment of code inserts a new node
pointed by X to be inserted at the end of the circular double linked list.

The start pointer points to beginning of the list?

[C]

A. X -> bwd = start;

X -> fwd = start -> fwd;
start -> bwd -> fwd = X;
start -> bwd = X;
start = X

B. X -> bwd = start -> bwd;
X -> fwd = start;
start -> bwd -> fwd = X;
start -> bwd = X;
start = X

C. X -> bwd= start -> bwd;
X-> fwd = start;
start -> bwd -> fwd = X;
start -> bwd = X;

D. X -> bwd = start -> bwd;
X -> fwd = start;
start -> fwd-> fwd = X;
start -> fwd = X;
X = start;

30. Which among the following segments of inserts a new node pointed by
X to be inserted at any position (i.e neither first nor last) element of
the circular double linked list? Assume temp pointer points to the
previous position of new node.

[D]

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd;

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd;

C. temp -> fwd = X;

temp -> bwd = X -> fwd;
X -> fwd = X;
X -> fwd -> bwd = temp;

D. X -> bwd = temp;

X -> fwd =
temp -> fwd;
temp -> fwd

= X;
X -> fwd -> bwd = X;

Chapter

4
Stack and Queue

There are certain situations in computer science that one wants to restrict
insertions and deletions so that they can take place only at the beginning
or the end of the list, not in the middle. Two of such data structures that
are useful are:

 Stack.

 Queue.

Linear lists and arrays allow one to insert and delete elements at any
place in the list i.e., at the beginning, at the end or in the middle.

4.1. STACK:

A stack is a list of elements in which an element may be inserted or deleted only at one
end, called the top of the stack. Stacks are sometimes known as LIFO (last in, first out)
lists.

As the items can be added or removed only from the top i.e. the last item to be added
to a stack is the first item to be removed.

The two basic operations associated with stacks are:

 Push: is the term used to insert an element into a stack.

 Pop: is the term used to delete an element from a stack.

“Push” is the term used to insert an element into a stack. “Pop” is the term used to delete
an element from the stack.

All insertions and deletions take place at the same end, so the last element added to the

stack will be the first element removed from the stack. When a stack is created, the stack
base remains fixed while the stack top changes as elements are added and removed. The
most accessible element is the top and the least accessible element is the bottom of the
stack.

4.1.1. Representation of Stack:

Let us consider a stack with 6 elements capacity. This is called as the size of the stack.
The number of elements to be added should not exceed the maximum size of the stack.
If we attempt to add new element beyond the maximum size, we will encounter a stack
overflow condition. Similarly, you cannot remove elements beyond the base of the stack.
If such is the case, we will reach a stack underflow condition.

When an element is added to a stack, the operation is performed by push(). Figure 4.1
shows the creation of a stack and addition of elements using push().

Figure 4.1. Push operations on stack

When an element is taken off from the stack, the operation is performed by pop(). Figure
4.2 shows a stack initially with three elements and shows the deletion of elements using
pop().

TOP

4

3

2

1

0

Initial

Stack

TOP

4

3

2

1

0

POP

TOP

4

3

2

1

0

POP

TOP

4

3

2

1

0

POP

Empty

Stack

Figure 4.2. Pop operations on stack

4.1.2. Source code for stack operations, using array:

include <stdio.h>
include <conio.h>
include <stdlib.h>
define MAX 6
int stack[MAX];
int top = 0;
int menu()
{

int ch;
clrscr();
printf("\n … Stack operations using ARRAY... ");
printf("\n -----------********** ------------ \n");
printf("\n 1. Push ");
printf("\n 2. Pop ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void display()
{

int i;
if(top == 0)
{

printf("\n\nStack empty..");

11

22

11

33

22

11

33

22

11

22

11

11

}
else
{

}

}

return;

printf("\n\nElements in stack:");
for(i = 0; i < top; i++)

printf("\t%d", stack[i]);

void pop()

{
if(top == 0)
{

}
else

}

printf("\n\nStack Underflow..");
return;

printf("\n\npopped element is: %d ", stack[--top]);

void push()
{

int data;
if(top == MAX)

{

}
else

{

}

}

printf("\n\nStack Overflow..");
return;

printf("\n\nEnter data: ");
scanf("%d", &data);
stack[top] = data;
top = top + 1;
printf("\n\nData Pushed into the stack");

void main()
{

int ch;
do
{

ch = menu();
switch(ch)
{

case 1:

case 2:

case 3:

push();
break;

pop();
break;

display();
break;

case 4:

}

exit(0);

getch();

} while(1);
}

4.1.3. Linked List Implementation of Stack:

We can represent a stack as a linked list. In a stack push and pop operations are
performed at one end called top. We can perform similar operations at one end of list

using top pointer. The linked stack looks as shown in figure 4.3.

Figure 4.3. Linked stack

representation

4.1.4. Source code for stack operations, using linked list:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct stack
{

int data;
struct stack *next;

};

void push();
void pop();
void display();
typedef struct stack node;
node *start=NULL;
node *top = NULL;

node* getnode()
{

node *temp;

temp=(node *) malloc(sizeof(node)) ;
printf("\n Enter data ");
scanf("%d", &temp -> data);
temp -> next = NULL;
return temp;

}
void push(node *newnode)
{

node *temp;
if(newnode == NULL)
{

printf("\n Stack Overflow..");
return;

}

if(start == NULL)

{

}

else
{

}

start = newnode;
top = newnode;

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;
top = newnode;

printf("\n\n\t Data pushed into stack");
}

void pop()
{

node *temp;
if(top == NULL)
{

printf("\n\n\t Stack underflow");
return;

}
temp = start;
if(start -> next == NULL)
{

}

else
{

printf("\n\n\t Popped element is %d ", top -> data);
start = NULL;
free(top);
top = NULL;

while(temp -> next != top)
{

temp = temp -> next;
}
temp -> next = NULL;

printf("\n\n\t Popped element is %d ", top -> data);
free(top);
top = temp;

}
}
void display()
{

node *temp;
if(top == NULL)
{

}
else

{

printf("\n\n\t\t Stack is empty ");

temp = start;

printf("\n\n\n\t\t Elements in the stack: \n");
printf("%5d ", temp -> data);
while(temp != top)
{

temp = temp -> next;
printf("%5d ", temp -> data);

}
}

}

char menu()

{
char ch;
clrscr();
printf("\n \tStack operations using pointers.. ");
printf("\n -----------********** ------------ \n");
printf("\n 1. Push ");

printf("\n 2. Pop ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter your choice: ");
ch = getche();
return ch;

}

void main()
{

char ch;
node *newnode;
do
{

ch = menu();
switch(ch)
{

case '1' :

newnode = getnode();
push(newnode);
break;

case '2' :
pop();
break;

case '3' :

display();
break;

case '4':

return;
}
getch();

} while(ch != '4');
}

4.2. Algebraic Expressions:

An algebraic expression is a legal combination of operators and operands. Operand is the
quantity on which a mathematical operation is performed. Operand may be a variable
like x, y, z or a constant like 5, 4, 6 etc. Operator is a symbol which signifies a
mathematical or logical operation between the operands. Examples of familiar operators
include +, -, *, /, ^ etc.

An algebraic expression can be represented using three different notations. They are
infix, postfix and prefix notations:

Infix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator in between the two operands.

Example: (A + B) * (C - D)

Prefix: It is the form of an arithmetic notation in which we fix (place) the arithmetic
operator before (pre) its two operands. The prefix notation is called as

polish notation (due to the polish mathematician Jan Lukasiewicz in the
year 1920).

Example: * + A B – C D

Postfix: It is the form of an arithmetic expression in which we fix (place) the arithmetic

operator after (post) its two operands. The postfix notation is called as suffix
notation and is also referred to reverse polish notation.

Example: A B + C D - *

The three important features of postfix expression are:

1. The operands maintain the same order as in the equivalent infix expression.

2. The parentheses are not needed to designate the expression un-

ambiguously.

3. While evaluating the postfix expression the priority of the operators is no
longer relevant.

We consider five binary operations: +, -, *, / and $ or (exponentiation). For these
binary operations, the following in the order of precedence (highest to lowest):

OPERATOR PRECEDENCE VALUE

Exponentiation ($ or or ^) Highest 3

*, / Next highest 2

+, - Lowest 1

4.3. Converting expressions using Stack:

Let us convert the expressions from one type to another. These can be done as follows:

1. Infix to postfix
2. Infix to prefix

3. Postfix to infix
4. Postfix to prefix
5. Prefix to infix

6. Prefix to postfix

4.3.1. Conversion from infix to postfix:

Procedure to convert from infix expression to postfix expression is as follows:

1. Scan the infix expression from left to right.

2. a) If the scanned symbol is left parenthesis, push it onto the stack.

b) If the scanned symbol is an operand, then place directly in the postfix
expression (output).

c) If the symbol scanned is a right parenthesis, then go on popping all the
items from the stack and place them in the postfix expression till we
get the matching left parenthesis.

d) If the scanned symbol is an operator, then go on removing all the
operators from the stack and place them in the postfix expression, if
and only if the precedence of the operator which is on the top of the
stack is greater than (or greater than or equal) to the precedence of
the scanned operator and push the scanned operator onto the stack
otherwise, push the scanned operator onto the stack.

Example 1:

Convert ((A – (B + C)) * D) (E + F) infix expression to postfix form:

SYMBOL POSTFIX STRING STACK REMARKS

((

(((

A A ((

- A ((-

(A ((- (

B A B ((- (

+ A B ((- (+

C A B C ((- (+

) A B C + ((-

) A B C + - (

* A B C + - (*

D A B C + - D (*

) A B C + - D *

 A B C + - D *

(A B C + - D * (

E A B C + - D * E (

+ A B C + - D * E (+

F A B C + - D * E F (+

) A B C + - D * E F +

End of
string

A B C + - D * E F +

The input is now empty. Pop the output symbols
from the stack until it is empty.

Example 2:

Convert a + b * c + (d * e + f) * g the infix expression into postfix form.

SYMBOL POSTFIX STRING STACK REMARKS

a a

+ a +

b a b +

* a b + *

c a b c + *

+ a b c * + +

(a b c * + + (

d a b c * + d + (

* a b c * + d + (*

e a b c * + d e + (*

+ a b c * + d e * + (+

f a b c * + d e * f + (+

) a b c * + d e * f + +

* a b c * + d e * f + + *

g a b c * + d e * f + g + *

End of
string

a b c * + d e * f + g * +
The input is now empty. Pop the output symbols
from the stack until it is empty.

Example 3:

Convert the following infix expression A + B * C – D / E * H into its equivalent postfix
expression.

SYMBOL POSTFIX STRING STACK REMARKS

A A

+ A +

B A B +

* A B + *

C A B C + *

- A B C * + -

D A B C * + D -

/ A B C * + D - /

E A B C * + D E - /

* A B C * + D E / - *

H A B C * + D E / H - *

End of
string

A B C * + D E / H * -

The input is now empty. Pop the output symbols from
the stack until it is empty.

Example 4:

Convert the following infix expression A + (B * C – (D / E F) * G) * H into its
equivalent postfix expression.

SYMBOL POSTFIX STRING STACK REMARKS

A A

+ A +

(A + (

B A B + (

* A B + (*

C A B C + (*

- A B C * + (-

(A B C * + (- (

D A B C * D + (- (

/ A B C * D + (- (/

E A B C * D E + (- (/

 A B C * D E + (- (/

F A B C * D E F + (- (/

) A B C * D E F / + (-

* A B C * D E F / + (- *

G A B C * D E F / G + (- *

) A B C * D E F / G * - +

* A B C * D E F / G * - + *

H A B C * D E F / G * - H + *

End of
string

A B C * D E F / G * - H * +
The input is now empty. Pop the output
symbols from the stack until it is empty.

4.3.2. Program to convert an infix to postfix expression:

include <string.h>

char postfix[50];
char infix[50];
char opstack[50]; /* operator stack */
int i, j, top = 0;

int lesspriority(char op, char op_at_stack)
{

int k;
int pv1; /* priority value of op */
int pv2; /* priority value of op_at_stack */
char operators[] = {'+', '-', '*', '/', '%', '^', '(' };
int priority_value[] = {0,0,1,1,2,3,4};
if(op_at_stack == '(')

return 0;
for(k = 0; k < 6; k ++)

{
if(op == operators[k])

pv1 = priority_value[k];

}
for(k = 0; k < 6; k ++)
{

if(op_at_stack == operators[k])
pv2 = priority_value[k];

}
if(pv1 < pv2)

return 1;
else

}

return 0;

void push(char op) /* op - operator */

{
if(top == 0)
{

}
else

{

opstack[top] = op;
top++;

if(op != '(')
{

while(lesspriority(op, opstack[top-1]) == 1 && top > 0)
{

postfix[j] = opstack[--top];
j++;

}
}
opstack[top] = op; /* pushing onto stack */
top++;

}
}

pop()

{

while(opstack[--top] != '(') /* pop until '(' comes */

{
postfix[j] = opstack[top];
j++;

}

}

void main()
{

char ch;
clrscr();
printf("\n Enter Infix Expression : ");
gets(infix);
while((ch=infix[i++]) != ‘\0’)

{
switch(ch)
{

case ' ' : break;
case '(' :
case '+' :
case '-' :

case '*' :
case '/' :
case '^' :

case '%' :
push(ch); /* check priority and push */
break;

case ')' :

pop();
break;

default :

postfix[j] = ch;
j++;

}
}
while(top >= 0)
{

postfix[j] = opstack[--top];
j++;

/* before pushing the operator 'op'
into the stack check priority of op
with top of opstack if less then pop
the operator from stack then push
into postfix string else push op

onto stack itself */

}

postfix[j] = '\0';
printf("\n Infix Expression : %s ", infix);
printf("\n Postfix Expression : %s ", postfix);
getch();

}

4.3.3. Conversion from infix to prefix:

The precedence rules for converting an expression from infix to prefix are identical. The
only change from postfix conversion is that traverse the expression from right to left and
the operator is placed before the operands rather than after them. The prefix form of a
complex expression is not the mirror image of the postfix form.

Example 1:

Convert the infix expression A + B - C into prefix expression.

SYMBOL
PREFIX
STRING

STACK REMARKS

C C

- C -

B B C -

+ B C - +

A A B C - +

End of
string

- + A B C The input is now empty. Pop the output symbols from the
stack until it is empty.

Example 2:

Convert the infix expression (A + B) * (C - D) into prefix expression.

SYMBOL
PREFIX
STRING

STACK REMARKS

))

D D)

- D) -

C C D) -

(- C D

* - C D *

) - C D *)

B B - C D *)

+ B - C D *) +

A A B - C D *) +

(+ A B – C D *

End of
string

* + A B – C D The input is now empty. Pop the output symbols from the
stack until it is empty.

Example 3:

Convert the infix expression A B * C – D + E / F / (G + H) into prefix expression.

SYMBOL PREFIX STRING STACK REMARKS

)

)

H H)

+ H) +

G G H) +

(+ G H

/ + G H /

F F + G H /

/ F + G H / /

E E F + G H / /

+ / / E F + G H +

D D / / E F + G H +

- D / / E F + G H + -

C C D / / E F + G H + -

* C D / / E F + G H + - *

B B C D / / E F + G H + - *

 B C D / / E F + G H + - *

A A B C D / / E F + G H + - *

End of
string

+ - * A B C D / / E F + G H
The input is now empty. Pop the output
symbols from the stack until it is empty.

4.3.4. Program to convert an infix to prefix expression:

include <conio.h>
include <string.h>

char prefix[50];
char infix[50];
char opstack[50]; /* operator stack */
int j, top = 0;

void insert_beg(char ch)
{

int k;
if(j == 0)

prefix[0] = ch;
else

{

}
j++;

}

for(k = j + 1; k > 0; k--)

prefix[k] = prefix[k - 1];
prefix[0] = ch;

int lesspriority(char op, char op_at_stack)

{
int k;
int pv1; /* priority value of op */

int pv2; /* priority value of op_at_stack */
char operators[] = {'+', '-', '*', '/', '%', '^', ')'};
int priority_value[] = {0, 0, 1, 1, 2, 3, 4};
if(op_at_stack == ')')

return 0;
for(k = 0; k < 6; k ++)
{

if(op == operators[k])
pv1 = priority_value[k];

}
for(k = 0; k < 6; k ++)

{
if(op_at_stack == operators[k])

pv2 = priority_value[k];
}

if(pv1 < pv2)
return 1;

else

}

return 0;

void push(char op) /* op – operator */
{

if(top == 0)
{

}
else
{

opstack[top] = op;
top++;

if(op != ')')
{

/* before pushing the operator 'op' into the stack check priority of op with
top of operator stack if less pop the operator from stack then push into postfix
string else push op onto stack itself */

while(lesspriority(op, opstack[top-1]) == 1 && top > 0)

{
insert_beg(opstack[--top]);

}
}

opstack[top] = op; /* pushing onto stack */
top++;

}

}

void pop()

{
while(opstack[--top] != ')') /* pop until ')' comes; */

insert_beg(opstack[top]);
}

void main()

{
char ch;
int l, i = 0;
clrscr();
printf("\n Enter Infix Expression : ");

gets(infix);

l = strlen(infix);
while(l > 0)
{

ch = infix[--l];
switch(ch)
{

case ' ' : break;
case ')' :
case '+' :
case '-' :

case '*' :
case '/' :
case '^' :
case '%' :

push(ch); /* check priority and push */
break;

case '(' :

pop();
break;

default :

insert_beg(ch);
}

}
while(top > 0)

{
insert_beg(opstack[--top]);
j++;

}

prefix[j] = '\0';
printf("\n Infix Expression : %s ", infix);
printf("\n Prefix Expression : %s ", prefix);
getch();

}

4.3.5. Conversion from postfix to infix:

Procedure to convert postfix expression to infix expression is as follows:

1. Scan the postfix expression from left to right.

2. If the scanned symbol is an operand, then push it onto the stack.

3. If the scanned symbol is an operator, pop two symbols from the stack and
create it as a string by placing the operator in between the operands and
push it onto the stack.

4. Repeat steps 2 and 3 till the end of the expression.

Example:

Convert the following postfix expression A B C * D E F ^ / G * - H * + into its
equivalent infix expression.

Symbol Stack Remarks

A

B

C

*

D

E

F

^

/

G

*

-

H

*

+

End of
string

Push A

Push B

Push C

Pop two operands and place the
operator in between the operands and
push the string.

Push D

Push E

Push F

Pop two operands and place the
operator in between the operands and
push the string.
Pop two operands and place the
operator in between the operands and
push the string.

Push G

Pop two operands and place the
operator in between the operands and
push the string.
Pop two operands and place the
operator in between the operands and
push the string.

Push H

Pop two operands and place the
operator in between the operands and
push the string.

The input is now empty. The string formed is infix.

4.3.6. Program to convert postfix to infix expression:

include <stdio.h>
include <conio.h>
include <string.h>
define MAX 100

void pop (char*);
void push(char*);

char stack[MAX] [MAX];
int top = -1;

(A + (((B*C) – ((D/(E^F))*G)) * H))

A

A B

A B C

A (B*C)

A (B*C) D

A (B*C) D E

A (B*C) D E F

A (B*C) D (E^F)

A (B*C) (D/(E^F))

A (B*C) (D/(E^F)) G

A (B*C) ((D/(E^F))*G)

A ((B*C) – ((D/(E^F))*G))

A ((B*C) – ((D/(E^F))*G)) H

A (((B*C) – ((D/(E^F))*G)) * H)

void main()

{
char s[MAX], str1[MAX], str2[MAX], str[MAX];
char s1[2],temp[2];
int i=0;
clrscr() ;
printf("\Enter the postfix expression; ");
gets(s);
while (s[i]!='\0')
{

if(s[i] == ' ') /*skip whitespace, if any*/
i++;

if (s[i] == '^' || s[i] == '*'|| s[i] == '-' || s[i] == '+' || s[i] == '/')
{

}
else

{

}
i++;

}

pop(str1);
pop(str2);
temp[0] ='(';
temp[1] ='\0';
strcpy(str, temp);
strcat(str, str2);
temp[0] = s[i];
temp[1] = '\0';
strcat(str,temp);
strcat(str, str1);
temp[0] =')';
temp[1] ='\0';
strcat(str,temp);
push(str);

temp[0]=s[i];
temp[1]='\0';
strcpy(s1, temp);
push(s1);

printf("\nThe Infix expression is: %s", stack[0]);

}

void pop(char *a1)
{

strcpy(a1,stack[top]);
top--;

}

void push (char*str)
{

if(top == MAX - 1)

printf("\nstack is full");
else

{

}
}

top++;
strcpy(stack[top], str);

4.3.7. Conversion from postfix to prefix:

Procedure to convert postfix expression to prefix expression is as follows:

1. Scan the postfix expression from left to right.

2. If the scanned symbol is an operand, then push it onto the stack.

3. If the scanned symbol is an operator, pop two symbols from the stack and

create it as a string by placing the operator in front of the operands and
push it onto the stack.

5. Repeat steps 2 and 3 till the end of the expression.

Example:

Convert the following postfix expression A B C * D E F ^ / G * - H * + into its
equivalent prefix expression.

Symbol Stack Remarks

A A Push A

B A B Push B

C A B C Push C

*

D

E

F

^

/

G

*

-

H

*

+

End of
string

Pop two operands and place the operator in
front the operands and push the string.

Push D

Push E

Push F

Pop two operands and place the operator in
front the operands and push the string.

Pop two operands and place the operator in
front the operands and push the string.

Push G

Pop two operands and place the operator in
front the operands and push the string.

Pop two operands and place the operator in
front the operands and push the string.

Push H

Pop two operands and place the operator in
front the operands and push the string.

The input is now empty. The string formed is prefix.

+A*-*BC*/D^EFGH

A *BC

A *BC D

A *BC D E

A *BC D E F

A *BC D ^EF

A *BC /D^EF

A *BC /D^EF G

A *BC */D^EFG

A - *BC*/D^EFG

A - *BC*/D^EFG H

A *- *BC*/D^EFGH

4.3.8. Program to convert postfix to prefix expression:

include <conio.h>
include <string.h>

#define MAX 100
void pop (char *a1);
void push(char *str);
char stack[MAX][MAX];
int top =-1;

main()

{

char s[MAX], str1[MAX], str2[MAX], str[MAX];
char s1[2], temp[2];
int i = 0;
clrscr();
printf("Enter the postfix expression; ");
gets (s);
while(s[i]!='\0')
{

/*skip whitespace, if any */
if (s[i] == ' ')

i++;

if(s[i] == '^' || s[i] == '*' || s[i] == '-' || s[i]== '+' || s[i] == '/')
{

}
else

{

}
i++;

}

pop (str1);
pop (str2);
temp[0] = s[i];
temp[1] = '\0';
strcpy (str, temp);
strcat(str, str2);
strcat(str, str1);
push(str);

temp[0] = s[i];

temp[1] = '\0';
strcpy (s1, temp);
push (s1);

printf("\n The prefix expression is: %s", stack[0]);

}

void pop(char*a1)
{

if(top == -1)
{

}
else
{

}

}

printf("\nStack is empty");
return ;

strcpy (a1, stack[top]);
top--;

void push (char *str)

{
if(top == MAX - 1)

printf("\nstack is full");
else

{

}
}

top++;
strcpy(stack[top], str);

4.3.9. Conversion from prefix to infix:

Procedure to convert prefix expression to infix expression is as follows:

1. Scan the prefix expression from right to left (reverse order).

2. If the scanned symbol is an operand, then push it onto the stack.

3. If the scanned symbol is an operator, pop two symbols from the stack and
create it as a string by placing the operator in between the operands and
push it onto the stack.

4. Repeat steps 2 and 3 till the end of the expression.

Example:

Convert the following prefix expression + A * - * B C * / D ^ E F G H into its equivalent
infix expression.

Symbol Stack Remarks

H Push H

G Push G

F Push F

E Push E

Pop two operands and place the operator

^ in between the operands and push the
string.

D Push D

Pop two operands and place the operator

/ in between the operands and push the
string.
Pop two operands and place the operator

* in between the operands and push the
string.

C Push C

B Push B

Pop two operands and place the operator
* in front the operands and push the

string.
Pop two operands and place the operator
in front the operands and push the

-

H

H G

H G F

H G F E

H G (E^F)

H G (E^F) D

H G (D/(E^F))

H ((D/(E^F))*G)

H ((D/(E^F))*G) C

H ((D/(E^F))*G) C B

H ((D/(E^F))*G) (B*C)

H ((B*C)-((D/(E^F))*G))

*

A

+

End of
string

string.

Pop two operands and place the operator
in front the operands and push the
string.

Push A

Pop two operands and place the operator
in front the operands and push the
string.

The input is now empty. The string formed is infix.

4.3.10. Program to convert prefix to infix expression:

include <string.h>
define MAX 100

void pop (char*);
void push(char*);
char stack[MAX] [MAX];
int top = -1;

void main()

{
char s[MAX], str1[MAX], str2[MAX], str[MAX];
char s1[2],temp[2];
int i=0;
clrscr() ;
printf("\Enter the prefix expression; ");
gets(s);
strrev(s);

while (s[i]!='\0')
{

/*skip whitespace, if any*/
if(s[i] == ' ')

i++;
if (s[i] == '^' || s[i] == '*'|| s[i] == '-' || s[i] == '+' || s[i] == '/')

{

}
else
{

pop(str1);
pop(str2);
temp[0] ='(';
temp[1] ='\0';
strcpy(str, temp);
strcat(str, str1);
temp[0] = s[i];
temp[1] = '\0';
strcat(str,temp);
strcat(str, str2);
temp[0] =')';
temp[1] ='\0';
strcat(str,temp);
push(str);

temp[0]=s[i];

temp[1]='\0';
strcpy(s1, temp);
push(s1);

(((B*C)-((D/(E^F))*G))*H)

(A+(((B*C)-((D/(E^F))*G))*H))

(((B*C)-((D/(E^F))*G))*H) A

}
i++;

}
printf("\nThe infix expression is: %s", stack[0]);

}

void pop(char *a1)
{

strcpy(a1,stack[top]);
top--;

}

void push (char*str)
{

if(top == MAX - 1)
printf("\nstack is full");

else

{

}

}

top++;
strcpy(stack[top], str);

4.3.11. Conversion from prefix to postfix:

Procedure to convert prefix expression to postfix expression is as follows:

1. Scan the prefix expression from right to left (reverse order).

2. If the scanned symbol is an operand, then push it onto the stack.

3. If the scanned symbol is an operator, pop two symbols from the stack and

create it as a string by placing the operator after the operands and push it
onto the stack.

4. Repeat steps 2 and 3 till the end of the expression.

Example:

Convert the following prefix expression + A * - * B C * / D ^ E F G H into its equivalent
postfix expression.

Symbol Stack Remarks

H H Push H

G H G Push G

F H G F Push F

E H G F E Push E

Pop two operands and place the operator
^

after the operands and push the string.

D Push D

H G EF^

H G EF^ D

/

*

C

B

*

-

*

A

+

End of
string

Pop two operands and place the operator
after the operands and push the string.

Pop two operands and place the operator
after the operands and push the string.

Push C

Push B

Pop two operands and place the operator
after the operands and push the string.

Pop two operands and place the operator
after the operands and push the string.

Pop two operands and place the operator
after the operands and push the string.

Push A

Pop two operands and place the operator
after the operands and push the string.

The input is now empty. The string formed is postfix.

4.3.12. Program to convert prefix to postfix expression:

include <stdio.h>
include <conio.h>
include <string.h>

#define MAX 100

void pop (char *a1);
void push(char *str);
char stack[MAX][MAX];
int top =-1;

void main()
{

char s[MAX], str1[MAX], str2[MAX], str[MAX];
char s1[2], temp[2];
int i = 0;
clrscr();
printf("Enter the prefix expression; ");
gets (s);
strrev(s);
while(s[i]!='\0')
{

if (s[i] == ' ') /*skip whitespace, if any */
i++;

if(s[i] == '^' || s[i] == '*' || s[i] == '-' || s[i]== '+' || s[i] == '/')

{
pop (str1);
pop (str2);
temp[0] = s[i];

temp[1] = '\0';
strcat(str1,str2);
strcat (str1, temp);
strcpy(str, str1);
push(str);

}

BC*DEF^/G*-H*

ABC*DEF^/G*-H*+

H G DEF^/

H DEF^/G*

H DEF^/G* C

H DEF^/G* C B

H DEF^/G* BC*

H BC*DEF^/G*-

BC*DEF^/G*-H* A

else

{

}
i++;

}

temp[0] = s[i];
temp[1] = '\0';
strcpy (s1, temp);
push (s1);

printf("\nThe postfix expression is: %s", stack[0]);
}

void pop(char*a1)
{

if(top == -1)
{

}

else
{

}
}

printf("\nStack is empty");
return ;

strcpy (a1, stack[top]);
top--;

void push (char *str)

{
if(top == MAX - 1)

printf("\nstack is full");

else
{

}

}

top++;
strcpy(stack[top], str);

4.4. Evaluation of postfix expression:

The postfix expression is evaluated easily by the use of a stack. When a number is seen,
it is pushed onto the stack; when an operator is seen, the operator is applied to the two
numbers that are popped from the stack and the result is pushed onto the stack. When
an expression is given in postfix notation, there is no need to know any precedence rules;
this is our obvious advantage.

Example 1:

Evaluate the postfix expression: 6 5 2 3 + 8 * + 3 + *

SYMBOL
OPERAND

1
OPERAND 2 VALUE STACK REMARKS

6 6

5

6, 5

2

6, 5, 2

3

6, 5, 2, 3
The first four symbols are placed on
the stack.

+

2

3

5

6, 5, 5
Next a ‘+’ is read, so 3 and 2 are
popped from the stack and their sum
5, is pushed

8 2 3 5 6, 5, 5, 8 Next 8 is pushed

* 5 8 40 6, 5, 40
Now a ‘*’ is seen, so 8 and 5 are
popped as 8 * 5 = 40 is pushed

+ 5 40 45 6, 45
Next, a ‘+’ is seen, so 40 and 5 are
popped and 40 + 5 = 45 is pushed

3 5 40 45 6, 45, 3 Now, 3 is pushed

+ 45 3 48 6, 48
Next, ‘+’ pops 3 and 45 and pushes
45 + 3 = 48 is pushed

*

6

48

288

288
Finally, a ‘*’ is seen and 48 and 6

are popped, the result 6 * 48 =
288 is pushed

Example 2:

Evaluate the following postfix expression: 6 2 3 + - 3 8 2 / + * 2 3 +

SYMBOL OPERAND 1 OPERAND 2 VALUE STACK

6

6

2 6, 2

3

6, 2, 3

+ 2 3 5 6, 5

- 6 5 1 1

3 6 5 1 1, 3

8 6 5 1 1, 3, 8

2 6 5 1 1, 3, 8, 2

/ 8 2 4 1, 3, 4

+ 3 4 7 1, 7

* 1 7 7 7

2 1 7 7 7, 2

 7 2 49 49

3 7 2 49 49, 3

+ 49 3 52 52

4.4.1. Program to evaluate a postfix expression:

include <conio.h>
include <math.h>
define MAX 20

int isoperator(char ch)
{

if(ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch == '^')
return 1;

else

}

return 0;

void main(void)

{
char postfix[MAX];
int val;
char ch;

int i = 0, top = 0;
float val_stack[MAX], val1, val2, res;
clrscr();
printf("\n Enter a postfix expression: ");
scanf("%s", postfix);
while((ch = postfix[i]) != '\0')

{
if(isoperator(ch) == 1)
{

val2 = val_stack[--top];
val1 = val_stack[--top];
switch(ch)
{

case '+':
res = val1 + val2;
break;

case '-':

res = val1 - val2;
break;

case '*':

res = val1 * val2;
break;

case '/':

res = val1 / val2;
break;

case '^':

res = pow(val1, val2);
break;

}

}
else

top++;
i++;

}

val_stack[top] = res;

val_stack[top] = ch-48; /*convert character digit to integer digit */

printf("\n Values of %s is : %f ",postfix, val_stack[0]);
getch();

}

4.5. Applications of stacks:

1. Stack is used by compilers to check for balancing of parentheses, brackets

and braces.

2. Stack is used to evaluate a postfix expression.

3. Stack is used to convert an infix expression into postfix/prefix form.

4. In recursion, all intermediate arguments and return values are stored on the
processor’s stack.

5. During a function call the return address and arguments are pushed onto a

stack and on return they are popped off.

4.6. Queue:

A queue is another special kind of list, where items are inserted at one end called the
rear and deleted at the other end called the front. Another name for a queue is a “FIFO”

or “First-in-first-out” list.

The operations for a queue are analogues to those for a stack, the difference is that the
insertions go at the end of the list, rather than the beginning. We shall use the following
operations on queues:

 enqueue: which inserts an element at the end of the queue.

 dequeue: which deletes an element at the start of the queue.

4.6.1. Representation of Queue:

Let us consider a queue, which can hold maximum of five elements. Initially the queue

is empty.

0 1 2 3 4

F R

Q u eu e E mp t y

F RO NT = RE A R = 0

Now, insert 11 to the queue. Then queue status will be:

0 1 2 3 4

11

F R

RE A R = RE A R + 1 = 1
FRO NT = 0

Next, insert 22 to the queue. Then the queue status is:

0 1 2 3 4

11 22

F R

RE A R = RE A R + 1 = 2
FRO NT = 0

Again insert another element 33 to the queue. The status of the queue is:

0 1 2 3 4

11 22 33

F R

RE A R = RE A R + 1 = 3

FRO NT = 0

Now, delete an element. The element deleted is the element at the front of the queue.
So the status of the queue is:

0 1 2 3 4

RE A R = 3

F RO NT = F R O NT + 1 = 1

F R

Again, delete an element. The element to be deleted is always pointed to by the FRONT
pointer. So, 22 is deleted. The queue status is as follows:

0 1 2 3 4

33

F R

RE A R = 3

F RO NT = F R O NT + 1 = 2

Now, insert new elements 44 and 55 into the queue. The queue status is:

0 1 2 3 4

33 44 55

F R

RE A R = 5

FRO NT = 2

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as
the rear crossed the maximum size of the queue (i.e., 5). There will be queue full signal.
The queue status is as follows:

0 1 2 3 4

RE A R = 5

FRO NT = 2

F R

Now it is not possible to insert an element 66 even though there are two vacant positions
in the linear queue. To over come this problem the elements of the queue are to be

shifted towards the beginning of the queue so that it creates vacant position at the rear
end. Then the FRONT and REAR are to be adjusted properly. The element 66 can be
inserted at the rear end. After this operation, the queue status is as follows:

0 1 2 3 4

33 44 55 66

F R

RE A R = 4
FRO NT = 0

This difficulty can overcome if we treat queue position with index 0 as a position that
comes after position with index 4 i.e., we treat the queue as a circular queue.

22 33

33 44 55

4.6.2. Source code for Queue operations using array:

In order to create a queue we require a one dimensional array Q(1:n) and two variables
front and rear. The conventions we shall adopt for these two variables are that front is

always 1 less than the actual front of the queue and rear always points to the last element
in the queue. Thus, front = rear if and only if there are no elements in the queue. The
initial condition then is front = rear = 0. The various queue operations to perform
creation, deletion and display the elements in a queue are as follows:

1. insertQ(): inserts an element at the end of queue Q.

2. deleteQ(): deletes the first element of Q.

3. displayQ(): displays the elements in the queue.

include <conio.h>
define MAX 6
int Q[MAX];
int front, rear;

void insertQ()
{

int data;

if(rear == MAX)
{

}
else

{

}

}

printf("\n Linear Queue is full");
return;

printf("\n Enter data: ");
scanf("%d", &data);
Q[rear] = data;
rear++;

printf("\n Data Inserted in the Queue ");

void deleteQ()
{

if(rear == front)
{

}
else

{

}
}

printf("\n\n Queue is Empty..");
return;

printf("\n Deleted element from Queue is %d", Q[front]);
front++;

void displayQ()
{

int i;

if(front == rear)
{

}
else

{

printf("\n\n\t Queue is Empty");
return;

printf("\n Elements in Queue are: ");
for(i = front; i < rear; i++)

{

printf("%d\t", Q[i]);
}

}
}

int menu()
{

int ch;
clrscr();
printf("\n \tQueue operations using ARRAY..");
printf("\n -----------********** ------------ \n");
printf("\n 1. Insert ");
printf("\n 2. Delete ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}
void main()
{

int ch;
do
{

ch = menu();
switch(ch)
{

case 1:

case 2:

case 3:

case 4:

}

insertQ();
break;

deleteQ();
break;

displayQ();
break;

return;

getch();
} while(1);

}

4.6.3. Linked List Implementation of Queue:

We can represent a queue as a linked list. In a queue data is deleted from the front end
and inserted at the rear end. We can perform similar operations on the two ends of a list.
We use two pointers front and rear for our linked queue implementation.

The linked queue looks as shown in figure 4.4:

Figure 4.4. Linked Queue representation

4.6.4. Source code for queue operations using linked list:

include <stdlib.h>
include <conio.h>

struct queue
{

int data;
struct queue *next;

};
typedef struct queue node;

node *front = NULL;
node *rear = NULL;

node* getnode()
{

node *temp;

temp = (node *) malloc(sizeof(node)) ;
printf("\n Enter data ");
scanf("%d", &temp -> data);
temp -> next = NULL;
return temp;

}
void insertQ()
{

node *newnode;
newnode = getnode();
if(newnode == NULL)
{

printf("\n Queue Full");
return;

}
if(front == NULL)
{

}
else
{

}

front = newnode;
rear = newnode;

rear -> next = newnode;
rear = newnode;

printf("\n\n\t Data Inserted into the Queue..");
}

void deleteQ()
{

node *temp;
if(front == NULL)
{

printf("\n\n\t Empty Queue..");
return;

}
temp = front;
front = front -> next;

printf("\n\n\t Deleted element from queue is %d ", temp -> data);
free(temp);

}

void displayQ()
{

node *temp;
if(front == NULL)

{

}
else
{

printf("\n\n\t\t Empty Queue ");

temp = front;
printf("\n\n\n\t\t Elements in the Queue are: ");

while(temp != NULL)
{

printf("%5d ", temp -> data);
temp = temp -> next;

}
}

}

char menu()
{

char ch;
clrscr();
printf("\n \t..Queue operations using pointers.. ");
printf("\n\t -----------********** ------------ \n");

printf("\n 1. Insert ");
printf("\n 2. Delete ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter your choice: ");
ch = getche();
return ch;

}

void main()
{

char ch;
do
{

ch = menu();
switch(ch)
{

case '1' :
insertQ();
break;

case '2' :
deleteQ();
break;

case '3' :

displayQ();
break;

case '4':
return;

}

getch();
} while(ch != '4');

}

4.7. Applications of Queue:

1. It is used to schedule the jobs to be processed by the CPU.

2. When multiple users send print jobs to a printer, each printing job is kept in
the printing queue. Then the printer prints those jobs according to first in first
out (FIFO) basis.

3. Breadth first search uses a queue data structure to find an element from a
graph.

4.8. Circular Queue:

A more efficient queue representation is obtained by regarding the array Q[MAX] as
circular. Any number of items could be placed on the queue. This implementation of a
queue is called a circular queue because it uses its storage array as if it were a circle
instead of a linear list.

There are two problems associated with linear queue. They are:

 Time consuming: linear time to be spent in shifting the elements to the

beginning of the queue.

 Signaling queue full: even if the queue is having vacant position.

For example, let us consider a linear queue status as follows:

0 1 2 3 4

33 44 55

F R

RE A R = 5
FRO NT = 2

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as
the rear crossed the maximum size of the queue (i.e., 5). There will be queue full signal.
The queue status is as follows:

0 1 2 3 4

33 44 55

F R

RE A R = 5

FRO NT = 2

This difficulty can be overcome if we treat queue position with index zero as a position
that comes after position with index four then we treat the queue as a circular queue.

In circular queue if we reach the end for inserting elements to it, it is possible to insert
new elements if the slots at the beginning of the circular queue are empty.

4.8.1. Representation of Circular Queue:

Let us consider a circular queue, which can hold maximum (MAX) of six elements.
Initially the queue is empty.

F R

1 Q u eu e E mp t y

4 MA X = 6

F RO NT = RE A R = 0

CO U NT = 0

Circ u lar Q u e u e

Now, insert 11 to the circular queue. Then circular queue status will be:

F

R

FRO NT = 0
4 RE A R = (RE A R + 1) % 6 = 1

CO U NT = 1

Circ u lar Q u e u e

Insert new elements 22, 33, 44 and 55 into the circular queue. The circular queue

status is:

F

R

5
0

11

4 55 22 1

44 33

3 2

FRONT = 0

REAR = (REAR + 1) % 6 = 5

COUNT = 5

Circular Queue

Now, delete an element. The element deleted is the element at the front of the circular
queue. So, 11 is deleted. The circular queue status is as follows:

R

F

F RO NT = (F R O NT + 1) % 6 = 1

4 RE A R = 5

CO U NT = CO U NT - 1 = 4

Circ u lar Q u e u e

Again, delete an element. The element to be deleted is always pointed to by the FRONT
pointer. So, 22 is deleted. The circular queue status is as follows:

R

F RO NT = (F R O NT + 1) % 6 = 2
4 RE A R = 5

CO U NT = CO U NT - 1 = 3

F

Circ u lar Q u e u e

Again, insert another element 66 to the circular queue. The status of the circular queue
is:

R

4 FRO NT = 2

RE A R = (RE A R + 1) % 6 = 0

C O U NT = C O U NT + 1 = 4

F

Circ u lar Q u e u e

Now, insert new elements 77 and 88 into the circular queue. The circular queue status
is:

5
0

66 77

4 55

3

88 1

44 33

2 R

F

F RO NT = 2, RE A R = 2
RE A R = RE A R % 6 = 2

CO U NT = 6

Circ u lar Q u e u e

Now, if we insert an element to the circular queue, as COUNT = MAX we cannot add
the element to circular queue. So, the circular queue is full.

4.8.2. Source code for Circular Queue operations, using array:

include <stdio.h>
include <conio.h>
define MAX 6

int CQ[MAX];
int front = 0;
int rear = 0;
int count = 0;

void insertCQ()
{

int data;
if(count == MAX)
{

}
else
{

}

}

printf("\n Circular Queue is Full");

printf("\n Enter data: ");
scanf("%d", &data);
CQ[rear] = data;
rear = (rear + 1) % MAX;
count ++;
printf("\n Data Inserted in the Circular Queue ");

void deleteCQ()

{
if(count == 0)
{

}
else

{

}

}

printf("\n\nCircular Queue is Empty..");

printf("\n Deleted element from Circular Queue is %d ", CQ[front]);
front = (front + 1) % MAX;
count --;

void displayCQ()

{
int i, j;
if(count == 0)
{

}
else

{

printf("\n\n\t Circular Queue is Empty ");

printf("\n Elements in Circular Queue are: ");
j = count;
for(i = front; j != 0; j--)
{

printf("%d\t", CQ[i]);
i = (i + 1) % MAX;

}
}

}

int menu()
{

int ch;
clrscr();
printf("\n \t Circular Queue Operations using ARRAY..");
printf("\n -----------********** ------------ \n");
printf("\n 1. Insert ");
printf("\n 2. Delete ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter Your Choice: ");
scanf("%d", &ch);
return ch;

}

void main()

{
int ch;
do
{

ch = menu();
switch(ch)
{

case 1:

case 2:

case 3:

case 4:

default:

}

insertCQ();
break;

deleteCQ();
break;

displayCQ();
break;

return;

printf("\n Invalid Choice ");

getch();
} while(1);

}

Deletion Insertion

Insertion Deletion

front rear

4.9. Deque:

In the preceding section we saw that a queue in which we insert items at one end and
from which we remove items at the other end. In this section we examine an extension

of the queue, which provides a means to insert and remove items at both ends of the
queue. This data structure is a deque. The word deque is an acronym derived from
double-ended queue. Figure 4.5 shows the representation of a deque.

36 16 56 62 19

Figure 4.5. Representation of a deque.

A deque provides four operations. Figure 4.6 shows the basic operations on a deque.

 enqueue_front: insert an element at front.

 dequeue_front: delete an element at front.

 enqueue_rear: insert element at rear.

 dequeue_rear: delete element at rear.

Figure 4.6. Basic operations on deque

There are two variations of deque. They are:

 Input restricted deque (IRD)

 Output restricted deque (ORD)

An Input restricted deque is a deque, which allows insertions at one end but allows
deletions at both ends of the list.

An output restricted deque is a deque, which allows deletions at one end but allows
insertions at both ends of the list.

enqueue_front(3

dequeue_front(33)

enqueue_front(5

4.10. Priority Queue:

A priority queue is a collection of elements such that each element has been assigned a
priority and such that the order in which elements are deleted and processed comes from

the following rules:

1. An element of higher priority is processed before any element of lower
priority.

2. two elements with same priority are processed according to the order in
which they were added to the queue.

A prototype of a priority queue is time sharing system: programs of high priority are
processed first, and programs with the same priority form a standard queue. An efficient
implementation for the Priority Queue is to use heap, which in turn can be used for sorting
purpose called heap sort.

Exercises

1. What is a linear data structure? Give two examples of linear data structures.

2. Is it possible to have two designs for the same data structure that provide the
same functionality but are implemented differently?

3. What is the difference between the logical representation of a data structure and
the physical representation?

4. Transform the following infix expressions to reverse polish notation:

a) A B * C – D + E / F / (G + H)

b) ((A + B) * C – (D – E)) (F + G)

c) A – B / (C * D E)

d) (a + b c d) * (e + f / d))
f) 3 – 6 * 7 + 2 / 4 * 5 – 8
g) (A – B) / ((D + E) * F)

h) ((A + B) / D) ((E – F) * G)

5. Evaluate the following postfix expressions:
a) P1: 5, 3, +, 2, *, 6, 9, 7, -, /, -
b) P2: 3, 5, +, 6, 4, -, *, 4, 1, -, 2, , +

c) P3 : 3, 1, +, 2, , 7, 4, -, 2, *, +, 5, -

6. Consider the usual algorithm to convert an infix expression to a postfix expression.
Suppose that you have read 10 input characters during a conversion and that the
stack now contains these symbols:

bottom

Now, suppose that you read and process the 11th symbol of the input. Draw the
stack for the case where the 11th symbol is:

A. A number:
B. A left parenthesis:
C. A right parenthesis:
D. A minus sign:

E. A division sign:

+

(

*

7. Write a program using stack for parenthesis matching. Explain what modifications
would be needed to make the parenthesis matching algorithm check expressions
with different kinds of parentheses such as (), [] and {}'s.

8. Evaluate the following prefix expressions:
a) + * 2 + / 14 2 5 1
b) - * 6 3 – 4 1
c) + + 2 6 + - 13 2 4

9. Convert the following infix expressions to prefix notation:

a) ((A + 2) * (B + 4)) -1
b) Z – ((((X + 1) * 2) – 5) / Y)
c) ((C * 2) + 1) / (A + B)
d) ((A + B) * C – (D - E)) (F + G)

e) A – B / (C * D E)

10. Write a “C” function to copy one stack to another assuming

a) The stack is implemented using array.

b) The stack is implemented using linked list.

11. Write an algorithm to construct a fully parenthesized infix expression from its
postfix equivalent. Write a “C” function for your algorithm.

12. How can one convert a postfix expression to its prefix equivalent and vice-versa?

13. A double-ended queue (deque) is a linear list where additions and deletions can be

performed at either end. Represent a deque using an array to store the elements
of the list and write the “C” functions for additions and deletions.

14. In a circular queue represented by an array, how can one specify the number of
elements in the queue in terms of “front”, “rear” and MAX-QUEUE-SIZE? Write a

“C” function to delete the K-th element from the “front” of a circular queue.

15. Can a queue be represented by a circular linked list with only one pointer pointing
to the tail of the queue? Write “C” functions for the “add” and “delete” operations
on such a queue

16. Write a “C” function to test whether a string of opening and closing parenthesis is
well formed or not.

17. Represent N queues in a single one-dimensional array. Write functions for “add”

and “delete” operations on the ith queue

18. Represent a stack and queue in a single one-dimensional array. Write functions for
“push”, “pop” operations on the stack and “add”, “delete” functions on the queue.

Multiple Choice Questions

1. Which among the following is a linear data structure:

A. Queue
B. Stack
C. Linked List

D. all the above

[D]

2. Which among the following is a Dynamic data structure:
A. Double Linked List C. Stack
B. Queue D. all the above

3. Stack is referred as:

[

[

A

A

]

]

A. Last in first out list C. both A and B
B. First in first out list D. none of the above

4. A stack is a data structure in which all insertions and deletions of entries
are made at:

[A]

A. One end
B. In the middle

C. Both the ends
D. At any position

5. A queue is a data structure in which all insertions and deletions are made
respectively at:

[A]

A. rear and front
B. front and front

C. front and rear
D. rear and rear

6. Transform the following infix expression to postfix form:
(A + B) * (C – D) / E

[D]

A. A B * C + D / -
B. A B C * C D / - +

C. A B + C D * - / E
D. A B + C D - * E /

7. Transform the following infix expression to postfix form:
A - B / (C * D)

[B]

A. A B * C D - /
B. A B C D * / -

C. / - D C * B A
D. - / * A B C D

8. Evaluate the following prefix expression: * - + 4 3 5 / + 2 4 3 [A]

A. 4
B. 8

C. 1
D. none of the above

9. Evaluate the following postfix expression: 1 4 18 6 / 3 + + 5 / + [C]

A. 8
B. 2

C. 3
D. none of the above

10. Transform the following infix expression to prefix form:
((C * 2) + 1) / (A + B)

[B]

A. A B + 1 2 C * + /
B. / + * C 2 1 + A B

C. / * + 1 2 C A B +
D. none of the above

11. Transform the following infix expression to prefix form:
Z – ((((X + 1) * 2) – 5) / Y)

[D]

A. / - * + X 1 2 5 Y
B. Y 5 2 1 X + * - /

C. / * - + X 1 2 5 Y
D. none of the above

12. Queue is also known as: [B]

A. Last in first out list
B. First in first out list

C. both A and B
D. none of the above

13. One difference between a queue and a stack is: [C]
A. Queues require dynamic memory, but stacks do not.
B. Stacks require dynamic memory, but queues do not.
C. Queues use two ends of the structure; stacks use only one.
D. Stacks use two ends of the structure, queues use only one.

14. If the characters 'D', 'C', 'B', 'A' are placed in a queue (in that order), and
then removed one at a time, in what order will they be removed?

[D]

A. ABCD
B. ABDC

C. DCAB
D. DCBA

15. Suppose we have a circular array implementation of the queue class,
with ten items in the queue stored at data[2] through data[11]. The
CAPACITY is 42. Where does the push member function place the new
entry in the array?

[D]

A. data[1]
B. data[2]

C. data[11]
D. data[12]

16. Consider the implementation of the queue using a circular array. What
goes wrong if we try to keep all the items at the front of a partially-filled
array (so that data[0] is always the front).
A. The constructor would require linear time.
B. The get_front function would require linear time.
C. The insert function would require linear time.
D. The is_empty function would require linear time.

17. In the linked list implementation of the queue class, where does the push

member function place the new entry on the linked list?
A. At the head
B. At the tail
C. After all other entries that are greater than the new entry.
D. After all other entries that are smaller than the new entry.

18. In the circular array version of the queue class (with a fixed-sized array),

which operations require linear time for their worst-case behavior?

[B]

[A]

[]

A. front
B. push

C. empty
D. None of these.

19. In the linked-list version of the queue class, which operations require []

linear time for their worst-case behavior?
A. front
B. push

C. empty
D. None of these operations.

20. To implement the queue with a linked list, keeping track of a front
pointer and a rear pointer. Which of these pointers will change during an
insertion into a NONEMPTY queue?

[B]

A. Neither changes
B. Only front_ptr changes.

C. Only rear_ptr changes.
D. Both change.

21. To implement the queue with a linked list, keeping track of a front
point

er and a rear pointer. Which of these pointers will change during an
insertion into an EMPTY queue?

[D]

A. Neither changes
B. Only front_ptr changes.

C. Only rear_ptr changes.
D. Both change.

22. Suppose top is called on a priority queue that has exactly two entries
with equal priority. How is the return value of top selected?
A. The implementation gets to choose either one.
B. The one which was inserted first.

C. The one which was inserted most recently.

D. This can never happen (violates the precondition)

[B]

23. Entries in a stack are "ordered". What is the meaning of this statement? [D]
A. A collection of stacks can be sorted.

B. Stack entries may be compared with the '<' operation.
C. The entries must be stored in a linked list.
D. There is a first entry, a second entry, and so on.

24. The operation for adding an entry to a stack is traditionally called: [D]

A. add
B. append

C. insert
D. push

25. The operation for removing an entry from a stack is traditionally called: [C]
A. delete
B. peek

C. pop
D. remove

26. Which of the following stack operations could result in stack underflow? [A]
A. is_empty

B. pop

C. push

D. Two or more of the above answers

27. Which of the following applications may use a stack? [D]
A. A parentheses balancing program.
B. Keeping track of local variables at run time.

C. Syntax analyzer for a compiler.

D. All of the above.

28. Here is an infix expression: 4 + 3 * (6 * 3 - 12). Suppose that we are

using the usual stack algorithm to convert the expression from infix to
postfix notation. What is the maximum number of symbols that will
appear on the stack AT ONE TIME during the conversion of this
expression?

[D]

A. 1

B. 2

C. 3

D. 4

29. What is the value of the postfix expression 6 3 2 4 + - *
A. Something between -15 and -100
B. Something between -5 and -15
C. Something between 5 and -5
D. Something between 5 and 15

E. Something between 15 and 100

[A]

30. If the expression ((2 + 3) * 4 + 5 * (6 + 7) * 8) + 9 is evaluated with *
having precedence over +, then the value obtained is same as the value
of which of the following prefix expressions?

[A]

A. + + * + 2 3 4 * * 5 + 6 7 8 9
B. + * + + 2 3 4 * * 5 + 6 7 8 9

C. * + + + 2 3 4 * * 5 + 6 7 8 9
D. + * + + 2 3 4 + + 5 * 6 7 8 9

31. Evaluate the following prefix expression:
+ * 2 + / 14 2 5 1

[B]

A. 50
B. 25

C. 40
D. 15

32 Parenthesis are never needed prefix or postfix expression: [A]
A. True
B. False

C. Cannot be expected
D. None of the above

33 A postfix expression is merely the reverse of the prefix expression: [B]
A. True
B. False

C. Cannot be expected
D. None of the above

34 Which among the following data structure may give overflow error, even

though the current number of elements in it, is less than its size:

[A]

A. Simple Queue
B. Circular Queue

C. Stack
D. None of the above

35. Which among the following types of expressions does not require
precedence rules for evaluation:
A. Fully parenthesized infix expression
B. Prefix expression
C. both A and B

D. none of the above

[C]

36. Conversion of infix arithmetic expression to postfix expression uses: [D]
A. Stack
B. circular queue

C. linked list
D. Queue

Recursion

Recursion is deceptively simple in statement but exceptionally complicated
in implementation. Recursive procedures work fine in many problems.
Many programmers prefer recursion through simpler alternatives are
available. It is because recursion is elegant to use through it is costly in
terms of time and space. But using it is one thing and getting involved with
it is another.

In this unit we will look at “recursion” as a programmer who not only loves
it but also wants to understand it! With a bit of involvement it is going to
be an interesting reading for you.

2.1. Introduction to Recursion:

A function is recursive if a statement in the body of the function calls itself. Recursion is
the process of defining something in terms of itself. For a computer language to be
recursive, a function must be able to call itself.

For example, let us consider the function factr() shown below, which computers the
factorial of an integer.

#include <stdio.h>
int factorial (int);
main()
{

int num, fact;
printf (“Enter a positive integer value: ");
scanf (“%d”, &num);

fact = factorial (num);
printf ("\n Factorial of %d =%5d\n", num, fact);

}

int factorial (int n)
{

int result;

if (n == 0)
return (1);

else
result = n * factorial (n-1);

return (result);
}

A non-recursive or iterative version for finding the factorial is as follows:

factorial (int n)
{

int i, result = 1;

if (n == 0)

else
{

}

return (result);

for (i=1; i<=n; i++)

result = result * i;

return (result);
}

The operation of the non-recursive version is clear as it uses a loop starting at 1 and

ending at the target value and progressively multiplies each number by the moving
product.

When a function calls itself, new local variables and parameters are allocated storage on
the stack and the function code is executed with these new variables from the start. A
recursive call does not make a new copy of the function. Only the arguments and
variables are new. As each recursive call returns, the old local variables and parameters

are removed from the stack and execution resumes at the point of the function call inside
the function.

When writing recursive functions, you must have a exit condition somewhere to force the
function to return without the recursive call being executed. If you do not have an exit
condition, the recursive function will recurse forever until you run out of stack space and
indicate error about lack of memory, or stack overflow.

2.2. Differences between recursion and iteration:

 Both involve repetition.
 Both involve a termination test.
 Both can occur infinitely.

Iteration Recursion

Iteration explicitly user a repetition
structure.

Recursion achieves repetition through
repeated function calls.

Iteration terminates when the loop
continuation.

Recursion terminates when a base case
is recognized.

Iteration keeps modifying the counter

until the loop continuation condition
fails.

Recursion keeps producing simple

versions of the original problem until
the base case is reached.

Iteration normally occurs within a loop
so the extra memory assigned is
omitted.

Recursion causes another copy of the
function and hence a considerable
memory space’s occupied.

It reduces the processor’s operating
time.

It increases the processor’s operating
time.

2.3. Factorial of a given number:

The operation of recursive factorial function is as follows:

Start out with some natural number N (in our example, 5). The recursive definition is:

n = 0, 0 ! = 1 Base Case

n > 0, n ! = n * (n - 1) ! Recursive Case

Recursion Factorials:

5! =5 * 4! = 5 * =

4! = 4 *3! = 4 * =

factr(5) = 5 * factr(4) =

factr(4) = 4 * factr(3) =

3! = 3 * 2! = 3 * =

2! = 2 * 1! = 2 * =

factr(3) = 3 * factr(2) =

factr(2) = 2 * factr(1) =

1! = 1 * 0! = 1 * = factr(1) = 1 * factr(0) =

0! = 1 factr(0) =

5! = 5*4! = 5*4*3! = 5*4*3*2! = 5*4*3*2*1! = 5*4*3*2*1*0! = 5*4*3*2*1*1
=120

We define 0! to equal 1, and we define factorial N (where N > 0), to be N * factorial (N-

1). All recursive functions must have an exit condition, that is a state when it does not
recurse upon itself. Our exit condition in this example is when N = 0.

Tracing of the flow of the factorial () function:

When the factorial function is first called with, say, N = 5, here is what happens:

FUNCTION:

Does N = 0? No
Function Return Value = 5 * factorial (4)

At this time, the function factorial is called again, with N = 4.

FUNCTION:
Does N = 0? No
Function Return Value = 4 * factorial (3)

At this time, the function factorial is called again, with N = 3.

FUNCTION:

Does N = 0? No

Function Return Value = 3 * factorial (2)

At this time, the function factorial is called again, with N = 2.

FUNCTION:

Does N = 0? No
Function Return Value = 2 * factorial (1)

At this time, the function factorial is called again, with N = 1.

FUNCTION:
Does N = 0? No
Function Return Value = 1 * factorial (0)

At this time, the function factorial is called again, with N = 0.

FUNCTION:

Does N = 0? Yes
Function Return Value = 1

Now, we have to trace our way back up! See, the factorial function was called six times.
At any function level call, all function level calls above still exist! So, when we have N =
2, the function instances where N = 3, 4, and 5 are still waiting for their return values.

So, the function call where N = 1 gets retraced first, once the final call returns 0. So, the
function call where N = 1 returns 1*1, or 1. The next higher function call, where N
= 2, returns 2 * 1 (1, because that's what the function call where N = 1 returned). You
just keep working up the chain.

When N = 2, 2 * 1, or 2 was returned.
When N = 3, 3 * 2, or 6 was returned.

When N = 4, 4 * 6, or 24 was returned.
When N = 5, 5 * 24, or 120 was returned.

And since N = 5 was the first function call (hence the last one to be recalled), the value
120 is returned.

2.4. The Towers of Hanoi:

In the game of Towers of Hanoi, there are three towers labeled 1, 2, and 3. The game
starts with n disks on tower A. For simplicity, let n is 3. The disks are numbered from 1
to 3, and without loss of generality we may assume that the diameter of each disk is the
same as its number. That is, disk 1 has diameter 1 (in some unit of measure), disk 2 has
diameter 2, and disk 3 has diameter 3. All three disks start on tower A in the order 1, 2,

3. The objective of the game is to move all the disks in tower 1 to entire tower 3 using
tower 2. That is, at no time can a larger disk be placed on a smaller disk.

Figure 3.11.1, illustrates the initial setup of towers of Hanoi. The figure 3.11.2, illustrates
the final setup of towers of Hanoi.

The rules to be followed in moving the disks from tower 1 tower 3 using tower 2 are as

follows:

 Only one disk can be moved at a time.
 Only the top disc on any tower can be moved to any other tower.
 A larger disk cannot be placed on a smaller disk.

Fig. 3. 1 1. 1. In it ia l s et u p of T o w ers of Ha n o i

Fig 3. 1 1. 2. F in a l s et u p of T o w ers of Ha n o i

The towers of Hanoi problem can be easily implemented using recursion. To move the
largest disk to the bottom of tower 3, we move the remaining n – 1 disks to tower 2 and
then move the largest disk to tower 3. Now we have the remaining n – 1 disks to be
moved to tower 3. This can be achieved by using the remaining two towers. We can also
use tower 3 to place any disk on it, since the disk placed on tower 3 is the largest disk
and continue the same operation to place the entire disks in tower 3 in order.

The program that uses recursion to produce a list of moves that shows how to accomplish
the task of transferring the n disks from tower 1 to tower 3 is as follows:

#include <stdio.h>
#include <conio.h>

void towers_of_hanoi (int n, char *a, char *b, char *c);

int cnt=0;

int main (void)
{

int n;

printf("Enter number of discs: ");
scanf("%d",&n);
towers_of_hanoi (n, "Tower 1", "Tower 2", "Tower 3");
getch();

}

void towers_of_hanoi (int n, char *a, char *b, char *c)
{

if (n == 1)
{

}
else

{

}

}

++cnt;
printf ("\n%5d: Move disk 1 from %s to %s", cnt, a, c);
return;

towers_of_hanoi (n-1, a, c, b);
++cnt;

printf ("\n%5d: Move disk %d from %s to %s", cnt, n, a, c);
towers_of_hanoi (n-1, b, a, c);
return;

Output of the program:

RUN 1:

Enter the number of discs: 3

1: Move disk 1 from tower 1 to tower 3.

2: Move disk 2 from tower 1 to tower 2.

3: Move disk 1 from tower 3 to tower 2.

4: Move disk 3 from tower 1 to tower 3.

5: Move disk 1 from tower 2 to tower 1.

6: Move disk 2 from tower 2 to tower 3.

7: Move disk 1 from tower 1 to tower 3.

RUN 2:

Enter the number of discs: 4

1: Move disk 1 from tower 1 to tower 2.

2: Move disk 2 from tower 1 to tower 3.

3: Move disk 1 from tower 2 to tower 3.

4: Move disk 3 from tower 1 to tower 2.

5: Move disk 1 from tower 3 to tower 1.

6: Move disk 2 from tower 3 to tower 2.

7: Move disk 1 from tower 1 to tower 2.

8: Move disk 4 from tower 1 to tower 3.

9: Move disk 1 from tower 2 to tower 3.

10: Move disk 2 from tower 2 to tower 1.

11: Move disk 1 from tower 3 to tower 1.

12: Move disk 3 from tower 2 to tower 3.

13: Move disk 1 from tower 1 to tower 2.

14: Move disk 2 from tower 1 to tower 3.

15: Move disk 1 from tower 2 to tower 3.

2.5. Fibonacci Sequence Problem:

A Fibonacci sequence starts with the integers 0 and 1. Successive elements in this
sequence are obtained by summing the preceding two elements in the sequence. For
example, third number in the sequence is 0 + 1 = 1, fourth number is 1 + 1= 2, fifth
number is 1 + 2 = 3 and so on. The sequence of Fibonacci integers is given below:

0 1 1 2 3 5 8 13 21

fib(5) = fib(4) + fib(3)

fib(3) + fib(2) + fib(3)

fib(2) + fib(1) + fib(2) + fib(3)

fib(1) + fib(0) + fib(1) + fib(2) + fib(3)

1 + 0 + 1 + fib(1) + fib(0) + fib(3)

1 + 0 + 1 + 1 + 0 + fib(2) + fib(1)

1 + 0 + 1 + 1 + 0 + fib(1) + fib(0) + fib(1)

1 + 0 + 1 + 1 + 0 + 1 + 0 + 1 = 5

A recursive definition for the Fibonacci sequence of integers may be defined as follows:

Fib (n) = n if n = 0 or n = 1
Fib (n) = fib (n-1) + fib (n-2) for n >=2

We will now use the definition to compute fib(5):

We see that fib(2) is computed 3 times, and fib(3), 2 times in the above calculations.
We save the values of fib(2) or fib(3) and reuse them whenever needed.

A recursive function to compute the Fibonacci number in the nth position is given below:

main()
{

}

fib(n)
int n;
{

}

clrscr ();
printf (“=nfib(5) is %d”, fib(5));

int x;
if (n==0 | | n==1)
return n;
x=fib(n-1) + fib(n-2);
return (x);

Output:

fib(5) is 5

2.6. Program using recursion to calculate the NCR of a given number:

#include<stdio.h>
float ncr (int n, int r);

void main()
{

int n, r, result;

printf(“Enter the value of N and R :”);
scanf(“%d %d”, &n, &r);

result = ncr(n, r);

printf(“The NCR value is %.3f”, result);

}

float ncr (int n, int r)
{

if(r == 0)
return 1;

else

}

return(n * 1.0 / r * ncr (n-1, r-1));

Output:

Enter the value of N and R: 5 2
The NCR value is: 10.00

2.7. Program to calculate the least common multiple of a given number:

#include<stdio.h>

int alone(int a[], int n);
long int lcm(int a[], int n, int prime);

void main()

{

int a[20], status, i, n, prime;
printf (“Enter the limit: “);

scanf(“%d”, &n);

printf (“Enter the numbers : “);
for (i = 0; i < n; i++)

scanf(“%d”, &a[i]);
printf (“The least common multiple is %ld”, lcm(a, n, 2));

}

int alone (int a[], int n);
{

int k;

for (k = 0; k < n; k++)
if (a[k] != 1)

return 0;

return 1;
}

long int lcm (int a[], int n, int prime)
{

int i, status;
status = 0;
if (allone(a, n))

return 1;
for (i = 0; i < n; i++)

if ((a[i] % prime) == 0)

{
status = 1;

a[i] = a[i] / prime;
}

if (status == 1)
return (prime * lcm(a, n, prime));

else

}

return (lcm (a, n, prime = (prime == 2) ? prime+1 : prime+2));

Output:

Enter the limit: 6

Enter the numbers: 6 5 4 3 2 1
The least common multiple is 60

2.8. Program to calculate the greatest common divisor:

#include<stdio.h>

int check_limit (int a[], int n, int prime);

int check_all (int a[], int n, int prime);
long int gcd (int a[], int n, int prime);

void main()
{

int a[20], stat, i, n, prime;
printf (“Enter the limit: “);

scanf (“%d”, &n);
printf (“Enter the numbers: “);
for (i = 0; i < n; i ++)

scanf (“%d”, &a[i]);
printf (“The greatest common divisor is %ld”, gcd (a, n, 2));

}

int check_limit (int a[], int n, int prime)
{

int i;
for (i = 0; i < n; i++)

if (prime > a[i])
return 1;

return 0;
}

int check_all (int a[], int n, int prime)
{

int i;
for (i = 0; i < n; i++)

if ((a[i] % prime) != 0)
return 0;

for (i = 0; i < n; i++)
a[i] = a[i] / prime;

return 1;
}

long int gcd (int a[], int n, int prime)
{

int i;
if (check_limit(a, n, prime))

return 1;
if (check_all (a, n, prime))

return (prime * gcd (a, n, prime));

else
return (gcd (a, n, prime = (prime == 2) ? prime+1 : prime+2));

}

Output:

Enter the limit: 5

Enter the numbers: 99 55 22 77 121
The greatest common divisor is 11

Exercises

1. What is the importance of the stopping case in recursive functions?

2. Write a function with one positive integer parameter called n. The function will

write 2^n-1 integers (where ^ is the exponentiation operation). Here are the
patterns of output for various values of n:

n=1: Output is: 1
n=2: Output is: 1 2 1
n=3: Output is: 1 2 1 3 1 2 1
n=4: Output is: 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

And so on. Note that the output for n always consists of the output for n-1,
followed by n itself, followed by a second copy of the output for n-1.

3. Write a recursive function for the mathematical function:
f(n) = 1 if n = 1
f(n) = 2 * f(n-1) if n >= 2

4. Which method is preferable in general?

a) Recursive method
b) Non-recursive method

5. Write a function using Recursion to print numbers from n to 0.

6. Write a function using Recursion to enter and display a string in reverse and

state whether the string contains any spaces. Don't use arrays/strings.

7. Write a function using Recursion to check if a number n is prime. (You have to
check whether n is divisible by any number below n)

8. Write a function using Recursion to enter characters one by one until a space is

encountered. The function should return the depth at which the space was
encountered.

Multiple Choice Questions

1. In a single function declaration, what is the maximum number of []
statements that may be recursive calls?
A. 1 B. 2
C. n (where n is the argument) D. There is no fixed maximum

2. What is the maximum depth of recursive calls a function may make? []
A. 1 B. 2
C. n (where n is the argument) D. There is no fixed maximum

3. Consider the following function: []
void super_write_vertical (int number)
{

if (number < 0)
{

printf(“ - ”);
super_write_vertical(abs(number));

}
else if (number < 10)

printf(“%d\n”, number);
else
{

super_write_vertical(number/10);

printf(“%d\n”, number % 10);
}

}

What values of number are directly handled by the stopping case?
A. number < 0 B. number < 10
C. number >= 0 && number < 10 D. number > 10

4. Consider the following function: []
void super_write_vertical(int number)
{

if (number < 0)
{

printf(“ - ”);
super_write_vertical (abs(number));

}

else if (number < 10)
printf(“%d\n”, number);

else
{

}
}

super_write_vertical(number/10);
printf(“%d\n”, number % 10);

Which call will result in the most recursive calls?
A. super_write_vertical(-1023) B. super_write_vertical(0)
C. super_write_vertical(100) D. super_write_vertical(1023)

5. Consider this function declaration: []

void quiz (int i)
{

if (i > 1)
{

quiz(i / 2);
quiz(i / 2);

}

printf(“ * ”);
}

How many asterisks are printed by the function call quiz(5)?
A. 3 B. 4

C. 7 D. 8

6. In a real computer, what will happen if you make a recursive call without []
making the problem smaller?

A. The operating system detects the infinite recursion because of the
"repeated state"

B. The program keeps running until you press Ctrl-C
C. The results are non-deterministic
D. The run-time stack overflows, halting the program

7. When the compiler compiles your program, how is a recursive call []
treated differently than a non-recursive function call?
A. Parameters are all treated as reference arguments
B. Parameters are all treated as value arguments
C. There is no duplication of local variables
D. None of the above

8. When a function call is executed, which information is not saved in the []

activation record?
A. Current depth of recursion.
B. Formal parameters.
C. Location where the function should return when done.

D. Local variables

9. What technique is often used to prove the correctness of a recursive []
function?
A. Communitivity. B. Diagonalization.

Binary Trees

A data structure is said to be linear if its elements form a sequence or a
linear list. Previous linear data structures that we have studied like an
array, stacks, queues and linked lists organize data in linear order. A data
structure is said to be non linear if its elements form a hierarchical
classification where, data items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and
graph structures represents hierarchial relationship between individual
data elements. Graphs are nothing but trees with certain restrictions
removed.

In this chapter in particular, we will explain special type of trees known as
binary trees, which are easy to maintain in the computer.

5.1. TREES:

A tree is hierarchical collection of nodes. One of the nodes, known as the root, is at the
top of the hierarchy. Each node can have at most one link coming into it. The node where
the link originates is called the parent node. The root node has no parent. The links
leaving a node (any number of links are allowed) point to child nodes. Trees are recursive
structures. Each child node is itself the root of a subtree. At the bottom of the tree are

leaf nodes, which have no children.

Trees represent a special case of more general structures known as graphs. In a graph,
there is no restrictions on the number of links that can enter or leave a node, and cycles
may be present in the graph. The figure 5.1.1 shows a tree and a non-tree.

Figure 5.1.1 A Tree and a not a tree

In a tree data structure, there is no distinction between the various children of a node
i.e., none is the "first child" or "last child". A tree in which such distinctions are made is
called an ordered tree, and data structures built on them are called ordered tree data

structures. Ordered trees are by far the commonest form of tree data structure.

5.2. BINARY TREE:

In general, tree nodes can have any number of children. In a binary tree, each node can
have at most two children. A binary tree is either empty or consists of a node called the

root together with two binary trees called the left subtree and the right subtree.

A tree with no nodes is called as a null tree. A binary tree is shown in figure 5.2.1.

Figure 5.2.1. Binary Tree

Binary trees are easy to implement because they have a small, fixed number of child
links. Because of this characteristic, binary trees are the most common types of trees
and form the basis of many important data structures.

Tree Terminology:

Leaf node

Path

A node with no children is called a leaf (or external node). A node which is not a
leaf is called an internal node.

A sequence of nodes n1, n2, . . ., nk, such that ni is the parent of ni + 1 for i = 1,
2,. . ., k - 1. The length of a path is 1 less than the number of nodes on the path.
Thus there is a path of length zero from a node to itself.

For the tree shown in figure 5.2.1, the path between A and I is A, B, D, I.

Siblings

The children of the same parent are called siblings.

For the tree shown in figure 5.2.1, F and G are the siblings of the parent node C
and H and I are the siblings of the parent node D.

Ancestor and Descendent

If there is a path from node A to node B, then A is called an ancestor of B and
B is called a descendent of A.

Subtree

Any node of a tree, with all of its descendants is a subtree.

Level
The level of the node refers to its distance from the root. The root of the tree has
level O, and the level of any other node in the tree is one more than the level of
its parent. For example, in the binary tree of Figure 5.2.1 node F is at level 2 and

node H is at level 3. The maximum number of nodes at any level is 2n.

Height

The maximum level in a tree determines its height. The height of a node in a tree
is the length of a longest path from the node to a leaf. The term depth is also
used to denote height of the tree. The height of the tree of Figure 5.2.1 is 3.

Depth
The depth of a node is the number of nodes along the path from the root to that
node. For instance, node ‘C’ in figure 5.2.1 has a depth of 1.

Assigning level numbers and Numbering of nodes for a binary tree:

The nodes of a binary tree can be numbered in a natural way, level by level, left
to right. The nodes of a complete binary tree can be numbered so that the root is
assigned the number 1, a left child is assigned twice the number assigned its
parent, and a right child is assigned one more than twice the number assigned its
parent. For example, see Figure 5.2.2.

Figure 5.2.2. Level by level numbering of binary tree

Properties of binary trees:

Some of the important properties of a binary tree are as follows:

1. If h = height of a binary tree, then

a. Maximum number of leaves = 2h

b. Maximum number of nodes = 2h + 1 - 1

2. If a binary tree contains m nodes at level l, it contains at most 2m nodes at
level l + 1.

3. Since a binary tree can contain at most one node at level 0 (the root), it can

contain at most 2l node at level l.

4. The total number of edges in a full binary tree with n node is n - 1.

Strictly Binary tree:

If every non-leaf node in a binary tree has nonempty left and right subtrees, the
tree is termed as strictly binary tree. Thus the tree of figure 5.2.3(a) is strictly

binary. A strictly binary tree with n leaves always contains 2n - 1 nodes.

Full Binary tree:

A full binary tree of height h has all its leaves at level h. Alternatively; All non
leaf nodes of a full binary tree have two children, and the leaf nodes have no

children.

A full binary tree with height h has 2h + 1 - 1 nodes. A full binary tree of height h
is a strictly binary tree all of whose leaves are at level h. Figure 5.2.3(d) illustrates
the full binary tree containing 15 nodes and of height 3.
A full binary tree of height h contains 2h leaves and, 2h - 1 non-leaf nodes.

Thus by induction, total number of nodes (tn)

h

 2 l
l 0

2 h 1 1 .

For example, a full binary tree of height 3 contains 23+1 – 1 = 15 nodes.

Figure 5.2.3. Examples of binary trees

Complete Binary tree:

A binary tree with n nodes is said to be complete if it contains all the first n nodes
of the above numbering scheme. Figure 5.2.4 shows examples of complete and

incomplete binary trees.

A complete binary tree of height h looks like a full binary tree down to level h-1,
and the level h is filled from left to right.

A complete binary tree with n leaves that is not strictly binary has 2n nodes. For
example, the tree of Figure 5.2.3(c) is a complete binary tree having 5 leaves and
10 nodes.

Figure 5.2.4. Examples of complete and incomplete binary trees

Internal and external nodes:

We define two terms: Internal nodes and external nodes. An internal node is a tree node
having at least one–key and possibly some children. It is some times convenient to have
another types of nodes, called an external node, and pretend that all null child links point
to such a node. An external node doesn’t exist, but serves as a conceptual place holder

for nodes to be inserted.

We draw internal nodes using circles, with letters as labels. External nodes are denoted
by squares. The square node version is sometimes called an extended binary tree. A
binary tree with n internal nodes has n+1 external nodes. Figure 5.2.6 shows a sample
tree illustrating both internal and external nodes.

Figure 5.2.6. Internal and external nodes

Data Structures for Binary Trees:

1. Arrays; especially suited for complete and full binary trees.

2. Pointer-based.

Array-based Implementation:

Binary trees can also be stored in arrays, and if the tree is a complete binary tree, this
method wastes no space. In this compact arrangement, if a node has an index i, its
children are found at indices 2i+1 and 2i+2, while its parent (if any) is found at index
floor((i-1)/2) (assuming the root of the tree stored in the array at an index zero).

This method benefits from more compact storage and better locality of reference,
particularly during a preorder traversal. However, it requires contiguous memory,
expensive to grow and wastes space proportional to 2h - n for a tree of height h with n
nodes.

Linked Representation (Pointer based):

Array representation is good for complete binary tree, but it is wasteful for many other
binary trees. The representation suffers from insertion and deletion of node from the
middle of the tree, as it requires the moment of potentially many nodes to reflect the
change in level number of this node. To overcome this difficulty we represent the binary
tree in linked representation.
In linked representation each node in a binary has three fields, the left child field denoted
as LeftChild, data field denoted as data and the right child field denoted as RightChild. If
any sub-tree is empty then the corresponding pointer’s LeftChild and RightChild will store

a NULL value. If the tree itself is empty the root pointer will store a NULL value.

The advantage of using linked representation of binary tree is that:

 Insertion and deletion involve no data movement and no movement of nodes
except the rearrangement of pointers.

The disadvantages of linked representation of binary tree includes:

 Given a node structure, it is difficult to determine its parent node.

 Memory spaces are wasted for storing NULL pointers for the nodes, which
have no subtrees.

The structure definition, node representation empty binary tree is shown in figure 5.2.6
and the linked representation of binary tree using this node structure is given in figure
5.2.7.

Figure 5.2.6. Structure definition, node representation and empty tree

LeftC hild data RightChild

0 1 2 3 4 5 6

struct binarytree
{

struct binarytree *LeftChild;

int data;
struct binarytree *RightChild;

};

typedef struct binarytree node;

node *root = NULL;

 A

Figure 5.2.7. Linked representation for the binary tree

5.3. Binary Tree Traversal Techniques:

A tree traversal is a method of visiting every node in the tree. By visit, we mean that
some type of operation is performed. For example, you may wish to print the contents
of the nodes.

There are four common ways to traverse a binary tree:

1. Preorder

2. Inorder

3. Postorder

4. Level order

In the first three traversal methods, the left subtree of a node is traversed before the
right subtree. The difference among them comes from the difference in the time at which
a root node is visited.

5.3.1. Recursive Traversal Algorithms:

Inorder Traversal:

In the case of inorder traversal, the root of each subtree is visited after its left subtree
has been traversed but before the traversal of its right subtree begins. The steps for
traversing a binary tree in inorder traversal are:

1. Visit the left subtree, using inorder.
2. Visit the root.
3. Visit the right subtree, using inorder.

The algorithm for inorder traversal is as follows:

void inorder(node *root)

{
if(root != NULL)
{

inorder(root->lchild);

 B

 C

 D

X E X

X F X

X G X

X H X

X I X

print root -> data;
inorder(root->rchild);

}
}

Preorder Traversal:

In a preorder traversal, each root node is visited before its left and right subtrees are
traversed. Preorder search is also called backtracking. The steps for traversing a binary
tree in preorder traversal are:

1. Visit the root.
2. Visit the left subtree, using preorder.

3. Visit the right subtree, using preorder.

The algorithm for preorder traversal is as follows:

void preorder(node *root)
{

if(root != NULL)
{

print root -> data;
preorder (root -> lchild);
preorder (root -> rchild);

}
}

Postorder Traversal:

In a postorder traversal, each root is visited after its left and right subtrees have been

traversed. The steps for traversing a binary tree in postorder traversal are:

1. Visit the left subtree, using postorder.
2. Visit the right subtree, using postorder

3. Visit the root.

The algorithm for postorder traversal is as follows:

void postorder(node *root)
{

if(root != NULL)
{

postorder (root -> lchild);
postorder (root -> rchild);
print (root -> data);

}
}

Level order Traversal:

In a level order traversal, the nodes are visited level by level starting from the root, and
going from left to right. The level order traversal requires a queue data structure. So, it
is not possible to develop a recursive procedure to traverse the binary tree in level order.
This is nothing but a breadth first search technique.

The algorithm for level order traversal is as follows:

void levelorder()
{

int j;
for(j = 0; j < ctr; j++)
{

if(tree[j] != NULL)
print tree[j] -> data;

}
}

Example 1:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

Example 2:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T ree Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

 • P reo rde r t ra v e rs a l y ie lds:
A, B, D, C , E, G , F , H, I

• Po sto rder travers a l yields:
D, B, G , E, H, I, F , C , A

• Ino rder travers a l yields:
D, B, A, E, G , C , H, F , I

• Level o rde r travers a l yields:
A, B, C , D, E, F , G , H, I

• P reo rde r t ra v e rs a l y ie lds:

P , F , B, H, G , S, R, Y, T, W , Z

• Po sto rder travers a l yields:
B, G , H, F , R, W , T, Z, Y, S, P

• Ino rder travers a l yields:
B, F , G , H, P , R, S, T, W , Y, Z

• Level o rde r travers a l yields:
P , F , S, B, H, R, Y, G , T, Z, W

Example 3:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T ree Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

Example 4:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

5.3.2. Building Binary Tree from Traversal Pairs:

Sometimes it is required to construct a binary tree if its traversals are known. From a
single traversal it is not possible to construct unique binary tree. However any of the two
traversals are given then the corresponding tree can be drawn uniquely:

 Inorder and preorder
 Inorder and postorder
 Inorder and level order

The basic principle for formulation is as follows:

If the preorder traversal is given, then the first node is the root node. If the postorder
traversal is given then the last node is the root node. Once the root node is identified, all
the nodes in the left sub-trees and right sub-trees of the root node can be identified using
inorder.

Same technique can be applied repeatedly to form sub-trees.

• P reo rde r t ra v e rs a l y ie lds:

2 , 7, 2, 6, 5, 11 , 5, 9, 4

• Po sto rder t rav ars a l y ields:
2 , 5, 11 , 6, 7, 4, 9, 5, 2

• Ino rder t rav ars a l y ields:
2 , 7, 5, 6, 11 , 2, 5, 4, 9

• Level o rde r travers a l yields:
2 , 7, 5, 2, 6, 9, 5, 11 , 4

• P reo rde r t ra v e rs a l y ie lds:

A, B, D, G , K, H, L, M , C , E

• Po sto rder t rav ars a l y ields:
K, G , L, M , H, D, B, E, C , A

• Ino rder t rav ars a l y ields:
K, G , D, L, H, M , B, A, E, C

• Level o rde r travers a l yields:
A, B, C , D, E, G , H, K, L, M

It can be noted that, for the purpose mentioned, two traversal are essential out of which
one should be inorder traversal and another preorder or postorder; alternatively, given
preorder and postorder traversals, binary tree cannot be obtained uniquely.

Example 1:

Construct a binary tree from a given preorder and inorder sequence:

Preorder: A B D G C E H I F

Inorder: D G B A H E I C F

Solution:

From Preorder sequence A B D G C E H I F, the root is: A

From Inorder sequence D G B A H E I C F, we get the left and right sub trees:

Left sub tree is: D G B

Right sub tree is: H E I C F

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G B:

From the preorder sequence B D G, the root of tree is: B

From the inorder sequence D G B, we can find that D and G are to the left of B.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G:

From the preorder sequence D G, the root of the tree is: D

From the inorder sequence D G, we can find that there is no left node to D and G is at
the right of D.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I C F:

From the preorder sequence C E H I F, the root of the left sub tree is: C

From the inorder sequence H E I C F, we can find that H E I are at the left of C and F is
at the right of C.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I:

From the preorder sequence E H I, the root of the tree is: E

From the inorder sequence H E I, we can find that H is at the left of E and I is at the
right of E.

The Binary tree upto this point looks like:

Example 2:

Construct a binary tree from a given postorder and inorder sequence:

Inorder: D G B A H E I C F
Postorder: G D B H I E F C A

Solution:

From Postorder sequence G D B H I E F C A, the root is: A

From Inorder sequence D G B A H E I C F, we get the left and right sub trees:

Left sub tree is: D G B
Right sub tree is: H E I C F

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G B:

From the postorder sequence G D B, the root of tree is: B

From the inorder sequence D G B, we can find that D G are to the left of B and there is
no right subtree for B.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G:

From the postorder sequence G D, the root of the tree is: D

From the inorder sequence D G, we can find that is no left subtree for D and G is to the
right of D.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I C F:

From the postorder sequence H I E F C, the root of the left sub tree is: C

From the inorder sequence H E I C F, we can find that H E I are to the left of C and F is
the right subtree for C.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I:

From the postorder sequence H I E, the root of the tree is: E

From the inorder sequence H E I, we can find that H is left subtree for E and I is to the
right of E.

The Binary tree upto this point looks like:

Example 3:

Construct a binary tree from a given preorder and inorder sequence:

Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9

Preorder: n6 n2 n1 n4 n3 n5 n9 n7 n8

Solution:

From Preorder sequence n6 n2 n1 n4 n3 n5 n9 n7 n8, the root is: n6

From Inorder sequence n1 n2 n3 n4 n5 n6 n7 n8 n9, we get the left and right sub
trees:

Left sub tree is: n1 n2 n3 n4 n5

Right sub tree is: n7 n8 n9

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n1 n2 n3 n4 n5:

From the preorder sequence n2 n1 n4 n3 n5, the root of tree is: n2

From the inorder sequence n1 n2 n3 n4 n5, we can find that n1 is to the left of n2 and
n3 n4 n5 are to the right of n2. The Binary tree upto this point looks like:

To find the root, left and right sub trees for n3 n4 n5:

From the preorder sequence n4 n3 n5, the root of the tree is: n4

From the inorder sequence n3 n4 n5, we can find that n3 is to the left of n4 and n5 is
at the right of n4.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 n8 n9:

From the preorder sequence n9 n7 n8, the root of the left sub tree is: n9

From the inorder sequence n7 n8 n9, we can find that n7 and n8 are at the left of n9
and no right subtree of n9.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 n8:

From the preorder sequence n7 n8, the root of the tree is: n7

From the inorder sequence n7 n8, we can find that is no left subtree for n7 and n8 is at
the right of n7.

The Binary tree upto this point looks like:

Example 4:

Construct a binary tree from a given postorder and inorder sequence:

Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9
Postorder: n1 n3 n5 n4 n2 n8 n7 n9 n6

Solution:

From Postorder sequence n1 n3 n5 n4 n2 n8 n7 n9 n6, the root is: n6

From Inorder sequence n1 n2 n3 n4 n5 n6 n7 n8 n9, we get the left and right sub
trees:

Left sub tree is: n1 n2 n3 n4 n5
Right sub tree is: n7 n8 n9

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n1 n2 n3 n4 n5:

From the postorder sequence n1 n3 n5 n4 n2, the root of tree is: n2

From the inorder sequence n1 n2 n3 n4 n5, we can find that n1 is to the left of n2 and
n3 n4 n5 are to the right of n2.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n3 n4 n5:

From the postorder sequence n3 n5 n4, the root of the tree is: n4

From the inorder sequence n3 n4 n5, we can find that n3 is to the left of n4 and n5 is
to the right of n4. The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 n8 and n9:

From the postorder sequence n8 n7 n9, the root of the left sub tree is: n9

From the inorder sequence n7 n8 n9, we can find that n7 and n8 are to the left of n9
and no right subtree for n9.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 and n8:

From the postorder sequence n8 n7, the root of the tree is: n7

From the inorder sequence n7 n8, we can find that there is no left subtree for n7 and
n8 is to the right of n7. The Binary tree upto this point looks like:

5.3.3. Binary Tree Creation and Traversal Using Arrays:

This program performs the following operations:

1. Creates a complete Binary Tree
2. Inorder traversal

3. Preorder traversal
4. Postorder traversal
5. Level order traversal

6. Prints leaf nodes
7. Finds height of the tree created

include <stdio.h>
include <stdlib.h>

struct tree

{
struct tree* lchild;
char data[10];
struct tree* rchild;

};

typedef struct tree node;
int ctr;
node *tree[100];

node* getnode()
{

node *temp ;
temp = (node*) malloc(sizeof(node));
printf("\n Enter Data: ");
scanf("%s",temp->data);
temp->lchild = NULL;
temp->rchild = NULL;
return temp;

}

void create_fbinarytree()
{

int j, i=0;
printf("\n How many nodes you want: ");
scanf("%d",&ctr);
tree[0] = getnode();
j = ctr;
j--;
do

{
if(j > 0) /* left child */
{

tree[i * 2 + 1] = getnode();
tree[i]->lchild = tree[i * 2 + 1];
j--;

}

if(j > 0) /* right child */
{

}
i++;

} while(j > 0);

}

tree[i * 2 + 2] = getnode();
j--;
tree[i]->rchild = tree[i * 2 + 2];

void inorder(node *root)

{
if(root != NULL)
{

inorder(root->lchild);
printf("%3s",root->data);
inorder(root->rchild);

}
}

void preorder(node *root)
{

if(root != NULL)
{

printf("%3s",root->data);
preorder(root->lchild);
preorder(root->rchild);

}
}

void postorder(node *root)
{

if(root != NULL)
{

postorder(root->lchild);
postorder(root->rchild);
printf("%3s",root->data);

}
}

void levelorder()

{
int j;
for(j = 0; j < ctr; j++)

{
if(tree[j] != NULL)

printf("%3s",tree[j]->data);

}
}

void print_leaf(node *root)
{

if(root != NULL)
{

if(root->lchild == NULL && root->rchild == NULL)
printf("%3s ",root->data);
print_leaf(root->lchild);
print_leaf(root->rchild);

}

}

int height(node *root)

{
if(root == NULL)
{

return 0;
}

if(root->lchild == NULL && root->rchild == NULL)
return 0;

else

}

return (1 + max(height(root->lchild), height(root->rchild)));

void main()
{

int i;
create_fbinarytree();
printf("\n Inorder Traversal: ");
inorder(tree[0]);
printf("\n Preorder Traversal: ");
preorder(tree[0]);
printf("\n Postorder Traversal: ");
postorder(tree[0]);
printf("\n Level Order Traversal: ");
levelorder();
printf("\n Leaf Nodes: ");
print_leaf(tree[0]);
printf("\n Height of Tree: %d ", height(tree[0]));

}

5.3.4. Binary Tree Creation and Traversal Using Pointers:

This program performs the following operations:

1. Creates a complete Binary Tree
2. Inorder traversal
3. Preorder traversal

4. Postorder traversal
5. Level order traversal
6. Prints leaf nodes

7. Finds height of the tree created
8. Deletes last node

9. Finds height of the tree created

include <stdio.h>
include <stdlib.h>

struct tree
{

struct tree* lchild;
char data[10];
struct tree* rchild;

};

typedef struct tree node;
node *Q[50];
int node_ctr;

node* getnode()
{

node *temp ;
temp = (node*) malloc(sizeof(node));
printf("\n Enter Data: ");
fflush(stdin);
scanf("%s",temp->data);
temp->lchild = NULL;
temp->rchild = NULL;
return temp;

}

void create_binarytree(node *root)

{
char option;
node_ctr = 1;
if(root != NULL)

{
printf("\n Node %s has Left SubTree(Y/N)",root->data);
fflush(stdin);
scanf("%c",&option);
if(option=='Y' || option == 'y')
{

}
else
{

}

root->lchild = getnode();
node_ctr++;
create_binarytree(root->lchild);

root->lchild = NULL;
create_binarytree(root->lchild);

printf("\n Node %s has Right SubTree(Y/N) ",root->data);
fflush(stdin);
scanf("%c",&option);
if(option=='Y' || option == 'y')

{

}
else

{

}

}
}

root->rchild = getnode();
node_ctr++;
create_binarytree(root->rchild);

root->rchild = NULL;
create_binarytree(root->rchild);

void make_Queue(node *root,int parent)
{

if(root != NULL)

{
node_ctr++;
Q[parent] = root;
make_Queue(root->lchild,parent*2+1);
make_Queue(root->rchild,parent*2+2);

}
}

delete_node(node *root, int parent)
{

int index = 0;
if(root == NULL)

printf("\n Empty TREE ");
else

{

node_ctr = 0;
make_Queue(root,0);
index = node_ctr-1;
Q[index] = NULL;
parent = (index-1) /2;
if(2* parent + 1 == index)

Q[parent]->lchild = NULL;

else

}

Q[parent]->rchild = NULL;

printf("\n Node Deleted ..");

}

void inorder(node *root)
{

if(root != NULL)
{

inorder(root->lchild);
printf("%3s",root->data);
inorder(root->rchild);

}
}

void preorder(node *root)
{

if(root != NULL)
{

printf("%3s",root->data);
preorder(root->lchild);
preorder(root->rchild);

}
}

void postorder(node *root)
{

if(root != NULL)
{

postorder(root->lchild);
postorder(root->rchild);
printf("%3s", root->data);

}
}

void print_leaf(node *root)
{

if(root != NULL)
{

if(root->lchild == NULL && root->rchild == NULL)
printf("%3s ",root->data);
print_leaf(root->lchild);
print_leaf(root->rchild);

}

}

int height(node *root)
{

if(root == NULL)
return -1;

else

}

return (1 + max(height(root->lchild), height(root->rchild)));

void print_tree(node *root, int line)
{

int i;

if(root != NULL)
{

print_tree(root->rchild,line+1);
printf("\n");
for(i=0;i<line;i++)

printf(" ");
printf("%s", root->data);
print_tree(root->lchild,line+1);

}

}

void level_order(node *Q[],int ctr)
{

int i;
for(i = 0; i < ctr ; i++)
{

if(Q[i] != NULL)
printf("%5s",Q[i]->data);

}

}

int menu()
{

int ch;
clrscr();
printf("\n 1. Create Binary Tree ");
printf("\n 2. Inorder Traversal ");
printf("\n 3. Preorder Traversal ");
printf("\n 4. Postorder Traversal ");
printf("\n 5. Level Order Traversal");
printf("\n 6. Leaf Node ");
printf("\n 7. Print Height of Tree ");
printf("\n 8. Print Binary Tree ");
printf("\n 9. Delete a node ");
printf("\n 10. Quit ");
printf("\n Enter Your choice: ");
scanf("%d", &ch);
return ch;

}

void main()
{

int i,ch;

node *root = NULL;
do
{

ch = menu();
switch(ch)
{

case 1 :

if(root == NULL)
{

}
else

{

}

break;
case 2 :

root = getnode();
create_binarytree(root);

printf("\n Tree is already Created ..");

printf("\n Inorder Traversal: ");
inorder(root);
break;

case 3 :
printf("\n Preorder Traversal: ");
preorder(root);
break;

case 4 :

printf("\n Postorder Traversal: ");
postorder(root);
break;

case 5:
printf("\n Level Order Traversal ..");
make_Queue(root,0);
level_order(Q,node_ctr);
break;

case 6 :
printf("\n Leaf Nodes: ");
print_leaf(root);
break;

case 7 :
printf("\n Height of Tree: %d ", height(root));
break;

case 8 :

printf("\n Print Tree \n");
print_tree(root, 0);
break;

case 9 :

case 10 :
exit(0);

}

delete_node(root,0);
break;

getch();
}while(1);

}

5.3.5. Non Recursive Traversal Algorithms:

At first glance, it appears that we would always want to use the flat traversal functions
since they use less stack space. But the flat versions are not necessarily better. For
instance, some overhead is associated with the use of an explicit stack, which may negate
the savings we gain from storing only node pointers. Use of the implicit function call stack
may actually be faster due to special machine instructions that can be used.

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps
until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the

stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with
right son exists, then set right son of vertex as current vertex and return to step
one.

Algorithm inorder()
{

stack[1] = 0
vertex = root

top: while(vertex ≠ 0)
{

push the vertex into the stack
vertex = leftson(vertex)

}

pop the element from the stack and make it as vertex

while(vertex ≠ 0)
{

print the vertex node
if(rightson(vertex) ≠ 0)
{

vertex = rightson(vertex)
goto top

}
pop the element from the stack and made it as vertex

}

}

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if
any and process each vertex. The traversing ends after a vertex with no left child
exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

Algorithm preorder()
{

stack[1] = 0

vertex = root.
while(vertex ≠ 0)
{

print vertex node
if(rightson(vertex) ≠ 0)

push the right son of vertex into the stack.
if(leftson(vertex) ≠ 0)

vertex = leftson(vertex)

else

}
}

pop the element from the stack and made it as vertex

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push
vertex on to stack and if vertex has a right son push –(right son of vertex) onto
stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a

negative node is popped, then ignore the sign and return to step one.

Algorithm postorder()
{

stack[1] = 0
vertex = root

top: while(vertex ≠ 0)

{

push vertex onto stack
if(rightson(vertex) ≠ 0)

push – (vertex) onto stack
vertex = leftson(vertex)

}
pop from stack and make it as vertex
while(vertex > 0)
{

print the vertex node
pop from stack and make it as vertex

}

if(vertex < 0)
{

vertex = - (vertex)
goto top

}
}

Example 1:

Traverse the following binary tree in pre, post and inorder using non-recursive
traversing algorithm.

Bin a ry T re e Pre, P o st a n d In ord er T rav ers in g

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the

stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with
right son exists, then set right son of vertex as current vertex and return to step
one.

• P reo rde r t ra v e rs a l y ie lds:
A, B, D, G , K, H, L, M , C , E

• Po sto rder t rav ars a l y ields:
K, G , L, M , H, D, B, E, C , A

• Ino rder t rav ars a l y ields:
K, G , D, L, H, M , B, A, E, C

CURRENT
VERTEX

STACK PROCESSED NODES REMARKS

A 0

PUSH 0

0 A B D G K

PUSH the left most path of A

K 0 A B D G K POP K

G 0 A B D K G POP G since K has no right son

D 0 A B K G D POP D since G has no right son

H 0 A B K G D Make the right son of D as vertex

0 A B H L K G D PUSH the leftmost path of H

L 0 A B H K G D L POP L

H 0 A B K G D L H POP H since L has no right son

M 0 A B K G D L H Make the right son of H as vertex

0 A B M K G D L H PUSH the left most path of M

M 0 A B K G D L H M POP M

B 0 A K G D L H M B POP B since M has no right son

A 0 K G D L H M B A Make the right son of A as vertex

C 0 C E K G D L H M B A PUSH the left most path of C

E 0 C K G D L H M B A E POP E

C 0 K G D L H M B A E C Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push
vertex on to stack and if vertex has a right son push –(right son of vertex) onto
stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a

negative node is popped, then ignore the sign and return to step one.

CURRENT
VERTEX

STACK PROCESSED NODES REMARKS

A 0

PUSH 0

0 A –C B D –H G K

 PUSH the left most path of A with a
-ve for right sons

0 A –C B D –H K G POP all +ve nodes K and G

H 0 A –C B D K G Pop H

0 A –C B D H –M L K G

PUSH the left most path of H with a
-ve for right sons

L 0 A –C B D H –M K G L POP all +ve nodes L

M 0 A –C B D H K G L Pop M

0 A –C B D H M K G L

PUSH the left most path of M with a
-ve for right sons

0 A –C K G L M H D B POP all +ve nodes M, H, D and B

C 0 A K G L M H D B Pop C

0 A C E K G L M H D B

PUSH the left most path of C with a
-ve for right sons

0 K G L M H D B E C A POP all +ve nodes E, C and A

0 K G L M H D B E C A Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if
any and process each vertex. The traversing ends after a vertex with no left child
exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

CURRENT
VERTEX

STACK PROCESSED NODES REMARKS

A 0

PUSH 0

0 C H A B D G K

PUSH the right son of each vertex onto stack and
process each vertex in the left most path

H 0 C A B D G K POP H

0 C M A B D G K H L

PUSH the right son of each vertex onto stack and
process each vertex in the left most path

M 0 C A B D G K H L POP M

0 C

A B D G K H L M

PUSH the right son of each vertex onto stack and
process each vertex in the left most path; M has
no left path

C 0 A B D G K H L M Pop C

0

A B D G K H L M C E

PUSH the right son of each vertex onto stack and
process each vertex in the left most path; C has no
right son on the left most path

0 A B D G K H L M C E Stop since stack is empty

Example 2:

Traverse the following binary tree in pre, post and inorder using non-recursive
traversing algorithm.

Bin a ry T re e Pre, P o st a n d In ord er T rav ers in g

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the

stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with
right son exists, then set right son of vertex as current vertex and return to step
one.

CURRENT VERTEX STACK PROCESSED NODES REMARKS

2 0

 0 2 7 2

2 0 2 7 2

7 0 2 2 7

6 0 2 6 5 2 7

5 0 2 6 2 7 5

6 0 2 2 7 5 6

11 0 2 11 2 7 5 6

11 0 2 2 7 5 6 11

2 0 2 7 5 6 11 2

5 0 5 2 7 5 6 11 2

5 0 2 7 5 6 11 2 5

9 0 9 4 2 7 5 6 11 2 5

4 0 9 2 7 5 6 11 2 5 4

9 0 2 7 5 6 11 2 5 4 9 Stop since stack is empty

• P reo rde r t ra v e rs a l y ie lds:

2 , 7, 2, 6, 5, 11 , 5, 9, 4

• Po sto rder t rav ars a l y ields:
2 , 5, 11 , 6, 7, 4, 9, 5, 2

• Ino rder t rav ars a l y ields:
2 , 7, 5, 6, 11 , 2, 5, 4, 9

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex) onto
stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a

negative node is popped, then ignore the sign and return to step one.

CURRENT VERTEX STACK PROCESSED NODES REMARKS

2 0

 0 2 –5 7 –6 2

2 0 2 –5 7 –6 2

6 0 2 –5 7 2

 0 2 –5 7 6 –11 5 2

5 0 2 –5 7 6 –11 2 5

11 0 2 –5 7 6 11 2 5

 0 2 –5 2 5 11 6 7

5 0 2 5 –9 2 5 11 6 7

9 0 2 5 9 4 2 5 11 6 7

 0 2 5 11 6 7 4 9 5 2 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if

any and process each vertex. The traversing ends after a vertex with no left child
exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

CURRENT VERTEX STACK PROCESSED NODES REMARKS

2 0

 0 5 6 2 7 2

6 0 5 11 2 7 2 6 5

11 0 5 2 7 2 6 5 11

 0 5 2 7 2 6 5 11

5 0 9 2 7 2 6 5 11 5

9 0 2 7 2 6 5 11 5 9 4

 0 2 7 2 6 5 11 5 9 4 Stop since stack is empty

5.4. Expression Trees:

Expression tree is a binary tree, because all of the operations are binary. It is also
possible for a node to have only one child, as is the case with the unary minus operator.

The leaves of an expression tree are operands, such as constants or variable names, and
the other (non leaf) nodes contain operators.

Once an expression tree is constructed we can traverse it in three ways:

 Inorder Traversal
 Preorder Traversal

 Postorder Traversal

Figure 5.4.1 shows some more expression trees that represent arithmetic expressions
given in infix form.

Figure 5.4.1 Expression Trees

An expression tree can be generated for the infix and postfix expressions.

An algorithm to convert a postfix expression into an expression tree is as follows:

1. Read the expression one symbol at a time.

2. If the symbol is an operand, we create a one-node tree and push a pointer to
it onto a stack.

3. If the symbol is an operator, we pop pointers to two trees T1 and T2 from the

stack (T1 is popped first) and form a new tree whose root is the operator and
whose left and right children point to T2 and T1 respectively. A pointer to this
new tree is then pushed onto the stack.

Example 1:

Construct an expression tree for the postfix expression: a b + c d e + * *

Solution:

The first two symbols are operands, so we create one-node trees and push pointers to
them onto a stack.

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a
pointer to it is pushed onto the stack.

Next, c, d, and e are read, and for each one–node tree is created and a pointer to the
corresponding tree is pushed onto the stack.

Now a ‘+’ is read, so two trees are merged.

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a ‘*’ as
root.

Finally, the last symbol is read, two trees are merged, and a pointer to the final tree is
left on the stack.

For the above tree:

Inorder form of the expression: a + b * c * d + e

Preorder form of the expression: * + a b * c + d e

Postorder form of the expression: a b + c d e + * *

Example 2:

Construct an expression tree for the arithmetic expression:

(A + B * C) – ((D * E + F) / G)

Solution:

First convert the infix expression into postfix notation. Postfix notation of the arithmetic
expression is: A B C * + D E * F + G / -

The first three symbols are operands, so we create one-node trees and pointers to
three nodes pushed onto the stack.

Next, a ‘*’ is read, so two pointers to trees are popped, a new tree is formed, and a
pointer to it is pushed onto the stack.

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a
pointer to it is pushed onto the stack.

Next, D and E are read, and for each one–node tree is created and a pointer to the

corresponding tree is pushed onto the stack.

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a ‘*’ as
root.

Proceeding similar to the previous steps, finally, when the last symbol is read, the
expression tree is as follows:

5.4.1. Converting expressions with expression trees:

Let us convert the following expressions from one type to another. These can be as
follows:

1. Postfix to infix
2. Postfix to prefix
3. Prefix to infix

4. Prefix to postfix

1. Postfix to Infix:

The following algorithm works for the expressions whose infix form does not require
parenthesis to override conventional precedence of operators.

A. Create the expression tree from the postfix expression
B. Run inorder traversal on the tree.

2. Postfix to Prefix:

The following algorithm works for the expressions to convert postfix to prefix:

A. Create the expression tree from the postfix expression

B. Run preorder traversal on the tree.

3. Prefix to Infix:

The following algorithm works for the expressions whose infix form does not require
parenthesis to override conventional precedence of operators.

A. Create the expression tree from the prefix expression
B. Run inorder traversal on the tree.

4. Prefix to postfix:

The following algorithm works for the expressions to convert postfix to prefix:

A. Create the expression tree from the prefix expression
B. Run postorder traversal on the tree.

5.5. Threaded Binary Tree:

The linked representation of any binary tree has more null links than actual pointers. If

there are 2n total links, there are n+1 null links. A clever way to make use of these null
links has been devised by A.J. Perlis and C. Thornton.

Their idea is to replace the null links by pointers called Threads to other nodes in the
tree.

If the RCHILD(p) is normally equal to zero, we will replace it by a pointer to the node

which would be printed after P when traversing the tree in inorder.

A null LCHILD link at node P is replaced by a pointer to the node which immediately
precedes node P in inorder. For example, Let us consider the tree:

The Threaded Tree corresponding to the above tree is:

The tree has 9 nodes and 10 null links which have been replaced by Threads. If we

traverse T in inorder the nodes will be visited in the order H D I B E A F C G.

For example, node ‘E’ has a predecessor Thread which points to ‘B’ and a successor
Thread which points to ‘A’. In memory representation Threads and normal pointers are
distinguished between as by adding two extra one bit fields LBIT and RBIT.

LBIT(P) = 1 if LCHILD(P) is a normal pointer
LBIT(P) = 0 if LCHILD(P) is a Thread

RBIT(P) = 1 if RCHILD(P) is a normal pointer
RBIT(P) = 0 if RCHILD(P) is a Thread

In the above figure two threads have been left dangling in LCHILD(H) and RCHILD(G).
In order to have no loose Threads we will assume a head node for all threaded binary
trees. The Complete memory representation for the tree is as follows. The tree T is the
left sub-tree of the head node.

LBIT LCHILD DATA RCHILD RBIT

1 A 1

5.6. Binary Search Tree:

A binary search tree is a binary tree. It may be empty. If it is not empty then it
satisfies the following properties:

1. Every element has a key and no two elements have the same key.

2. The keys in the left subtree are smaller than the key in the root.

3. The keys in the right subtree are larger than the key in the root.

4. The left and right subtrees are also binary search trees.

Figure 5.2.5(a) is a binary search tree, whereas figure 5.2.5(b) is not a binary search
tree.

Figure 5.2.5. Examples of binary search trees

5.7. General Trees (m-ary tree):

If in a tree, the outdegree of every node is less than or equal to m, the tree is called
general tree. The general tree is also called as an m-ary tree. If the outdegree of every

node is exactly equal to m or zero then the tree is called a full or complete m-ary tree.
For m = 2, the trees are called binary and full binary trees.

Differences between trees and binary trees:

TREE BINARY TREE

Each element in a
number of subtrees.

tree can have any Each element in a binary tree has at most
two subtrees.

The subtrees in a tree are unordered. The subtrees of each element in a binary
tree are ordered (i.e. we distinguish
between left and right subtrees).

5.7.1. Converting a m-ary tree (general tree) to a binary tree:

There is a one-to-one mapping between general ordered trees and binary trees. So, every
tree can be uniquely represented by a binary tree. Furthermore, a forest can also be
represented by a binary tree.

Conversion from general tree to binary can be done in two stages.

Stage 1:

 As a first step, we delete all the branches originating in every node except

the left most branch.

 We draw edges from a node to the node on the right, if any, which is
situated at the same level.

Stage 2:

 Once this is done then for any particular node, we choose its left and right
sons in the following manner:

 The left son is the node, which is immediately below the given node, and
the right son is the node to the immediate right of the given node on the
same horizontal line. Such a binary tree will not have a right subtree.

Example 1:

Convert the following ordered tree into a binary tree:

Solution:

Stage 1 tree by using the above mentioned procedure is as follows:

Stage 2 tree by using the above mentioned procedure is as follows:

Example 2:

Construct a unique binary tree from the given forest.

Solution:

Stage 1 tree by using the above mentioned procedure is as follows:

Stage 2 tree by using the above mentioned procedure is as follows (binary tree
representation of forest):

Example 3:

For the general tree shown below:

1. Find the corresponding binary tree T’.

2. Find the preorder traversal and the postorder traversal of T.

3. Find the preorder, inorder and postorder traversals of T’.

4. Compare them with the preorder and postorder traversals obtained for T’
with the general tree T.

Solution:

1. Stage 1:

The tree by using the above-mentioned procedure is as follows:

Stage 2:

The binary tree by using the above-mentioned procedure is as follows:

2. Suppose T is a general tree with root R and subtrees T1, T2, ………., TM. The
preorder traversal and the postorder traversal of T are:

Preorder: 1) Process the root R.

2) Traverse the subtree T1, T2, ……., TM in preorder.

Postorder: 1) Traverse the subtree T1, T2, ……., TM in postorder.
2) Process the root R.

The tree T has the root A and subtrees T1, T2 and T3 such that:

T1 consists of nodes B, C, D and E.

T2 consists of nodes F, G and H.

T3 consists of nodes J, K, L, M, N, P and Q.

A. The preorder traversal of T consists of the following steps:

(i) Process root A.

(ii) Traverse T1 in preorder: Process nodes B, C, D, E.

(iii) Traverse T2 in preorder: Process nodes F, G, H.

(iv) Traverse T3 in preorder: Process nodes J, K, L, M, P, Q, N.

The preorder traversal of T is as follows:

A, B, C, D, E, F, G, H, J, K, L, M, P, Q, N

B. The postorder traversal of T consists of the following steps:

(i) Traverse T1 in postorder: Process nodes C, D, E, B.

(ii) Traverse T2 in postorder: Process nodes G, H, F.

(iii) Traverse T3 in postorder: Process nodes K, L, P, Q, M, N, J.

(iv) Process root A.

The postorder traversal of T is as follows:

C, D, E, B, G, H, F, K, L, P, Q, M, N, J, A

3. The preorder, inorder and postorder traversals of the binary tree T’ are as

follows:

Preorder: A, B, C, D, E, F, G, H, J, K, M, P, Q, N

Inorder: C, D, E, B, G, H, F, K, L, P, Q, M, N, J, A

Postorder: E, D, C, H, G, Q, P, N, M, L, K, J, F, B, A

4. Comparing the preorder and postorder traversals of T’ with the general tree T:

We can observer that the preorder of the binary tree T’ is identical to the
preorder of the general T.

The inorder traversal of the binary tree T’ is identical to the postorder traversal
of the general tree T.

There is no natural traversal of the general tree T which corresponds to the
postorder traversal of its corresponding binary tree T’.

5.8. Search and Traversal Techniques for m-ary trees:

Search involves visiting nodes in a tree in a systematic manner, and may or may not
result into a visit to all nodes. When the search necessarily involved the examination of
every vertex in the tree, it is called the traversal. Traversing of a tree can be done in two
ways.

1. Depth first search or traversal.

2. Breadth first search or traversal.

5.8.1. Depth first search:

In Depth first search, we begin with root as a start state, then some successor of the
start state, then some successor of that state, then some successor of that and so on,

trying to reach a goal state. One simple way to implement depth first search is to use a
stack data structure consisting of root node as a start state.

If depth first search reaches a state S without successors, or if all the successors of a
state S have been chosen (visited) and a goal state has not get been found, then it “backs
up” that means it goes to the immediately previous state or predecessor formally, the
state whose successor was ‘S’ originally.

To illustrate this let us consider the tree shown below.

ST A RT

GO A L

Suppose S is the start and G is the only goal state. Depth first search will first visit S,
then A, then D. But D has no successors, so we must back up to A and try its second
successor, E. But this doesn’t have any successors either, so we back up to A again. But
now we have tried all the successors of A and haven’t found the goal state G so we must

back to ‘S’. Now ‘S’ has a second successor, B. But B has no successors, so we back up
to S again and choose its third successor, C. C has one successor, F. The first successor
of F is H, and the first of H is J. J doesn’t have any successors, so we back up to H and
try its second successor. And that’s G, the only goal state.

So the solution path to the goal is S, C, F, H and G and the states considered were in
order S, A, D, E, B, C, F, H, J, G.

Disadvantages:

1. It works very fine when search graphs are trees or lattices, but can get struck
in an infinite loop on graphs. This is because depth first search can travel
around a cycle in the graph forever.

To eliminate this keep a list of states previously visited, and never permit
search to return to any of them.

2. We cannot come up with shortest solution to the problem.

5.8.2. Breadth first search:

Breadth-first search starts at root node S and “discovers" which vertices are reachable
from S. Breadth-first search discovers vertices in increasing order of distance. Breadth-
first search is named because it visits vertices across the entire breadth.

0 0

To illustrate this let us consider the following tree:

ST A RT

GO A L

Breadth first search finds states level by level. Here we first check all the immediate
successors of the start state. Then all the immediate successors of these, then all the
immediate successors of these, and so on until we find a goal node. Suppose S is the

start state and G is the goal state. In the figure, start state S is at level 0; A, B and C
are at level 1; D, e and F at level 2; H and I at level 3; and J, G and K at level 4.

So breadth first search, will consider in order S, A, B, C, D, E, F, H, I, J and G and then
stop because it has reached the goal node.

Breadth first search does not have the danger of infinite loops as we consider states in

order of increasing number of branches (level) from the start state.

One simple way to implement breadth first search is to use a queue data structure
consisting of just a start state.

5.9. Sparse Matrices:

A sparse matrix is a two–dimensional array having the value of majority elements as
null. The density of the matrix is the number of non-zero elements divided by the total
number of matrix elements. The matrices with very low density are often good for use of
the sparse format. For example,

0 0

2

A

0 0

0 5

0

4 0

As far as the storage of a sparse matrix is concerned, storing of null elements is nothing

but wastage of memory. So we should devise technique such that only non-null elements
will be stored. The matrix A produces:

(3, 1) 1

(2, 2) 2
S = (3, 2) 3

(4, 3) 4
(1, 4) 5

The printed output lists the non-zero elements of S, together with their row and column
indices. The elements are sorted by columns, reflecting the internal data structure.
In large number of applications, sparse matrices are involved. One approach is to use
the linked list.

1 0 3 0

The program to represent sparse matrix:

/* Check whether the given matrix is sparse matrix or not, if so then print in
alternative form for storage. */

include <stdio.h>
include <conio.h>

main()
{

int matrix[20][20], m, n, total_elements, total_zeros = 0, i, j;

clrscr();
printf("\n Enter Number of rows and columns: ");
scanf("%d %d",&m, &n);
total_elements = m * n;

printf("\n Enter data for sparse matrix: ");
for(i = 0; i < m ; i++)
{

for(j = 0; j < n ; j++)
{

scanf("%d", &matrix[i][j]);
if(matrix[i][j] == 0)
{

total_zeros++;
}

}
}

if(total_zeros > total_elements/2)
{

printf("\n Given Matrix is Sparse Matrix..");
printf("\n The Representaion of Sparse Matrix is: \n");
printf("\n Row \t Col \t Value ");
for(i = 0; i < m ; i++)
{

for(j = 0; j < n ; j++)
{

if(matrix[i][j] != 0)
{

printf("\n %d \t %d \t %d",i,j,matrix[i][j]);
}

}
}

}
else

printf("\n Given Matrix is Not a Sparse Matrix..");

}

EXCERCISES

1. How many different binary trees can be made from three nodes that contain the

key value 1, 2, and 3?

2. a.

b.

Draw all the possible binary trees that have four leaves and all the nonleaf nodes
have no children.
Show what would be printed by each of the following.
An inorder traversal of the tree
A postorder traversal of the tree
A preorder traversal of the tree

3. a. Draw the binary search tree whose elements are inserted in the following order:
50 72 96 94 107 26 12 11 9 2 10 25 51 16 17 95

b. What is the height of the tree?
c. What nodes are on level?

d. Which levels have the maximum number of nodes that they could contain?
e. What is the maximum height of a binary search tree containing these nodes?

Draw such a tree?
f. What is the minimum height of a binary search tree containing these nodes?

Draw such a tree?

g. Show how the tree would look after the deletion of 29, 59 and 47?

h. Show how the (original) tree would look after the insertion of nodes containing
63, 77, 76, 48, 9 and 10 (in that order).

4. Write a “C” function to determine the height of a binary tree.

5. Write a “C” function to count the number of leaf nodes in a binary tree.

6. Write a “C” function to swap a binary tree.

7. Write a “C” function to compute the maximum number of nodes in any level of a

binary tree. The maximum number of nodes in any level of a binary tree is also
called the width of the tree.

8. Construct two binary trees so that their postorder traversal sequences are the
same.

9. Write a “C” function to compute the internal path length of a binary tree.

10. Write a “C” function to compute the external path length of a binary tree.

11. Prove that every node in a tree except the root node has a unique parent.

12. Write a “C” function to reconstruct a binary tree from its preorder and inorder
traversal sequences.

13. Prove that the inorder and postorder traversal sequences of a binary tree uniquely

characterize the binary tree. Write a “C” function to reconstruct a binary tree from
its postorder and inorder traversal sequences.

14. Build the binary tree from the given traversal techniques:

A. Inorder: g d h b e i a f j c
Preorder: a b d g h e i c f j

B. Inorder: g d h b e i a f j c
Postorder: g h d i e b j f c a

C. Inorder: g d h b e i a f j c

Level order: a b c d e f g h i j

15. Build the binary tree from the given traversal techniques:

A. Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9
Preorder: n6 n2 n1 n4 n3 n5 n9 n7 n8

B. Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9

Postorder: n1 n3 n5 n4 n2 n8 n7 n9 n6

C. Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9
Level order: n6 n2 n9 n1 n4 n7 n3 n5 n8

16. Build the binary tree for the given inorder and preorder traversals:

Inorder: E A C K F H D B G

Preorder: F A E K C D H G B

17. Convert the following general tree represented as a binary tree:

3

1 7 10

12 15 13 14 8

11 4

5 9 2 6

16 17

Multiple Choice Questions

1. The node that has no children is referred as: [C]

A. Parent node
B. Root node

C. Leaf node
D. Sibblings

2. A binary tree in which all the leaves are on the same level is called as: [B]
A. Complete binary tree
B. Full binary tree

C. Strictly binary tree
D. Binary search tree

3. How can the graphs be represented? [C]
A. Adjacency matrix

B. Adjacency list

C. Incidence matrix

D. All of the above

4. The children of a same parent node are called as:

[

C

]

A. adjacent node

B. non-leaf node

C. Sibblings

D. leaf node

5. A tree with n vertices, consists of edges. [A]

A. n – 1
B. n - 2

C. n
D. log n

6. The maximum number of nodes at any level is: [B]
A. n
B. 2n

C. n + 1
D. 2n

FI GUR E 1

7. For the Binary tree shown in fig. 1, the in-order traversal sequence is: [C]

A. A B C D E F G H I J K
B. H I D E B F J K G C A

C. H D I B E A F C J G K
D. A B D H I E C F G J K

8. For the Binary tree shown in fig. 1, the pre-order traversal sequence is: [D]

A. A B C D E F G H I J K

B. H I D E B F J K G C A

C. H D I B E A F C J G K

D. A B D H I E C F G J K

9. For the Binary tree shown in fig. 1, the post-order traversal sequence is: [B]

A. A B C D E F G H I J K
B. H I D E B F J K G C A

C. H D I B E A F C J G K
D. A B D H I E C F G J K

FIGURE 2 and its adjacency list

10. Which is the correct order for Kruskal’s minimum spanning tree algorithm
to add edges to the minimum spanning tree for the figure 2 shown above:

A. (A, B) then (A, C) then (A, D) then (D, E) then (C, F) then (D, G)
B. (A, D) then (E, G) then (B, D) then (D, E) then (F, G) then (A, C)
C. both A and B

D. none of the above

[B]

11. For the figure 2 shown above, the cost of the minimal spanning tree is: [A]
A. 57
B. 68

C. 48
D. 32

FIGURE 3

12. For the figure 3, how many leaves does it have? [B]
A. 2
B. 4

C. 6
D. 8

13. For the figure 3, how many of the nodes have at least one sibling? [A]

A. 5

B. 6

C. 7

D. 8

14. For the figure 3, How many descendants does the root have? [D]

A. 0
B. 2

C. 4
D. 8

15. For the figure 3, what is the depth of the tree? [B]
A. 2
B. 3

C. 4
D. 8

16. For the figure 3, which statement is correct?
A. T

h

Node Adjacency List

A B C D

B A D E

C A D F

D A B C E F G

E B D G

F C D G

G F D E

e tree is neither complete nor full.
B. The tree is complete but not full.
C. The tree is full but not complete.

D. The tree is both full and complete.

[A]

17. There is a tree in the box at the top of this section. What is the order of []
nodes visited using a pre-order traversal?
A. 1 2 3 7 10 11 14 30 40

B. 1 2 3 14 7 10 11 40 30

C. 1 3 2 7 10 40 30 11 14

D. 14 2 1 3 11 10 7 30 40

18. There is a tree in the box at the top of this section. What is the order of []
nodes visited using an in-order traversal?
A. 1 2 3 7 10 11 14 30 40
B. 1 2 3 14 7 10 11 40 30

C. 1 3 2 7 10 40 30 11 14
D. 14 2 1 3 11 10 7 30 40

19. There is a tree in the box at the top of this section. What is the order of []
nodes visited using a post-order traversal?
A. 1 2 3 7 10 11 14 30 40
B. 1 2 3 14 7 10 11 40 30

C. 1 3 2 7 10 40 30 11 14
D. 14 2 1 3 11 10 7 30 40

20. What is the minimum number of nodes in a full binary tree with depth 3? [D]
A. 3
B. 4

21. Select the one true statement.

C. 8
D. 15

[C]

A. Every binary tree is either complete or full.
B. Every complete binary tree is also a full binary tree.
C. Every full binary tree is also a complete binary tree.
D. No binary tree is both complete and full.

22. Suppose T is a binary tree with 14 nodes. What is the minimum possible
depth of T?

[B]

A. 0
B. 3

C. 4
D. 5

23. Select the one FALSE statement about binary trees:
A. Every binary tree has at least one node.
B. Every non-empty tree has exactly one root node.
C. Every node has at most two children.
D. Every non-root node has exactly one parent.

24. Consider the node of a complete binary tree whose value is stored in data[i]
for an array implementation. If this node has a right child, where will the
right child's value be stored?

[A]

[C]

A. data[i+1]
B. data[i+2]

C. data[2*i + 1]
D. data[2*i + 2]

Figure 4

25. For the binary search tree shown in figure 4, Suppose we remove the root,
replacing it with something from the left subtree. What will be the new
root?

[D]

A. 1
B. 2

C. 4

D. 5
E. 16

Tree

26. Which traversals of tree 1 and tree 2, will produce the same sequence of
node names?

[C]

A. Preorder, Postorder
B. Postorder, Postorder

C. Postorder, Inorder
D. Inorder, Inorder

27. Which among the following is not a binary search tree? [C]

A. C.

B.

Tree 1

D.

5

28. For the binary search tree shown in figure 5, after deleting 23 from the []

binary search tree what node will be at the root?
A. 11
B. 25

C. 27
D. 14

29. For the binary search tree shown in figure 5, after deleting 23 from the
binary search tree what parent child pair does not occur in the tree?

[B]

A. 25 27
B. 27 11

C. 11 7
D. 7 9

30. The number of nodes in a complete binary tree of depth d is: [B]

A. 2d
B. 2k - 1

C. 2k
D. none of the above

31. The depth of a complete binary tree with n nodes is: [C]

A. log n
B. n2

C. log2 n + 1

D. 2n

32. If the inorder and preorder traversal of a binary tree are D, B, F, E, G, H, A,
C and A, B, D, E, F, G, H, C respectively then, the postorder traversal of that
tree is:

[A]

A. D, F, H, G, E, B, C, A
B. D, F, G, A, B, C, H, E

C. F, H, D, G, E, B, C, A
D. D, F, H, G, E, B, C, A

33. The data structure used by level order traversal of binary tree is: [A]
A. Queue
B. Stack

C. linked list
D. none of the above

 FI GUR E

Introduction to Graphs:

Graphs

Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges.
We will often denote n = |V|, e = |E|.

A graph is generally displayed as figure 6.5.1, in which the vertices are represented by

circles and the edges by lines.

An edge with an orientation (i.e., arrow head) is a directed edge, while an edge with no
orientation is our undirected edge.

If all the edges in a graph are undirected, then the graph is an undirected graph. The
graph in figure 6.5.1(a) is an undirected graph. If all the edges are directed; then the

graph is a directed graph. The graph of figure 6.5.1(b) is a directed graph. A directed
graph is also called as digraph. A graph G is connected if and only if there is a simple
path between any two nodes in G.

A graph G is said to be complete if every node a in G is adjacent to every other node v
in G. A complete graph with n nodes will have n(n-1)/2 edges. For example, Figure
6.5.1.(a) and figure 6.5.1.(d) are complete graphs.

A directed graph G is said to be connected, or strongly connected, if for each pair (u, v)
for nodes in G there is a path from u to v and also a path from v to u. On the other hand,
G is said to be unilaterally connected if for any pair (u, v) of nodes in G there is a path
from u to v or a path from v to u. For example, the digraph shown in figure 6.5.1
(e) is strongly connected.

Figure 6.5.1 Various Graphs

We can assign weight function to the edges: wG(e) is a weight of edge e E. The graph

which has such function assigned is called weighted graph.

The number of incoming edges to a vertex v is called in–degree of the vertex (denote
indeg(v)). The number of outgoing edges from a vertex is called out-degree (denote
outdeg(v)). For example, let us consider the digraph shown in figure 6.5.1(f),

indegree(v1) = 2 outdegree(v1) = 1

indegree(v2) = 2 outdegree(v2) = 0

A path is a sequence of vertices (v1, v2, , vk), where for all i, (vi, vi+1) E. A path

is simple if all vertices in the path are distinct. If there is a path containing one or more
edges which starts from a vertex Vi and terminates into the same vertex then the path

is known as a cycle. For example, there is a cycle in figure 6.5.1(a), figure 6.5.1(c) and
figure 6.5.1(d).

If a graph (digraph) does not have any cycle then it is called acyclic graph. For example,
the graphs of figure 6.5.1 (f) and figure 6.5.1 (g) are acyclic graphs.

A graph G’ = (V’, E’) is a sub-graph of graph G = (V, E) iff V’ V and E’ E.

A Forest is a set of disjoint trees. If we remove the root node of a given tree then it
becomes forest. The following figure shows a forest F that consists of three trees T1, T2
and T3.

A Forest F

A graph that has either self loop or parallel edges or both is called multi-graph.

Tree is a connected acyclic graph (there aren’t any sequences of edges that go around

in a loop). A spanning tree of a graph G = (V, E) is a tree that contains all vertices of V
and is a subgraph of G. A single graph can have multiple spanning trees.

Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T is n-1.

T3 T2 T1 C

Q R

 (b)

G2:
B
 4

D

(b)

0

6.1. Representation of Graphs:

There are two ways of representing digraphs. They are:

 Adjacency matrix.

 Adjacency List.

 Incidence matrix.

Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n
matrix, say A = (ai,j), where

a
 1

 if there is an edge from vi to v j

i, j
otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the
graph is directed. This matrix is also called as Boolean matrix or bit matrix.

 1 2 3 4 5

1 0 1 1 0 1
2 0 0 1 1 1
3 0 0 0 1 0
4 0 0 0 0 0
5 0 0 1 1 0

Figure 6.5.2. A graph and its Adjacency matrix

Figure 6.5.2(b) shows the adjacency matrix representation of the graph G1 shown in
figure 6.5.2(a). The adjacency matrix is also useful to store multigraph as well as
weighted graph. In case of multigraph representation, instead of entry 0 or 1, the entry
will be between number of edges between two vertices.

In case of weighted graph, the entries are weights of the edges between the vertices.
The adjacency matrix for a weighted graph is called as cost adjacency matrix. Figure
6.5.3(b) shows the cost adjacency matrix representation of the graph G2 shown in figure
6.5.3(a).

 A B C D E F G

A 0 3 6

B 3 0 2 4

C 6 2 0 1 4 2

D 4 1 0 2 4
E 4 2 0 2 1
F 2 2 0 1

G 4 1 1 0

Figure 6.5.3 Weighted graph and its Cost adjacency matrix

1 2 3

1
1

2 2

3 3

2

3

3 2 1

0

Adjacency List:

In this representation, the n rows of the adjacency matrix are represented as n linked
lists. An array Adj[1, 2, n] of pointers where for 1 < v < n, Adj[v] points to a

linked list containing the vertices which are adjacent to v (i.e. the vertices that can be
reached from v by a single edge). If the edges have weights then these weights may also
be stored in the linked list elements. For the graph G in figure 6.5.4(a), the adjacency
list in shown in figure 6.5.4 (b).

1 1 1

0 0 1

0 1 0

Figure 6.5.4 Adjacency matrix and adjacency list

Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then
incidence matrix A is defined as an n by e matrix, say A = (ai,j), where

a
 1

 if there is an edge j incident tovi

i, j
otherwise

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a
matrix is called as vertex-edge incidence matrix or simply incidence matrix.

B
 c D a b c d e f g h i j k l

b
d

e
f A

B
1 0 0 0 0 0 1
1 1 1 0 0 0 0

0 0
0 0

0
0

0 0
0 0

C
 h

E
 i

G
 C 0 1 0 1 0 0 1 1 0 0 1 0

g D 0 0 1 1 1 1 0 0 0 0 0 0
k

j
l E 0 0 0 0 1 0 0 1 1 1 0 0

F (b) F 0 0 0 0 0 0 0 0 0 1 1 1
 G 0 0 0 0 0 1 0 0 1 0 0 1

Figure 6.5.4 Graph and its incidence matrix

Figure 6.5.4(b) shows the incidence matrix representation of the graph G1 shown in
figure 6.5.4(a).

6.2. Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the
vertex set of the given graph, and whose edge set is a subset of the edge set of the given

graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum spanning
tree (MST) is a spanning tree with the smallest possible weight.

Example:

G:

A gra p h G:

T hre e

(of

ma ny

p o s s ib le)

s p a nning

t re e s

fro m

gra p h

G:

2

2

 4

G: 3 5 3

 6

 1 1

A w e ig ht e d gra p h G: T h e mini ma l s p a nning t re e fro m w e ig ht e d gra p h G:

Let's consider a couple of real-world examples on minimum spanning tree:

 One practical application of a MST would be in the design of a network. For
instance, a group of individuals, who are separated by varying distances, wish
to be connected together in a telephone network. Although MST cannot do
anything about the distance from one connection to another, it can be used to
determine the least cost paths with no cycles in this network, thereby

connecting everyone at a minimum cost.

 Another useful application of MST would be finding airline routes. The vertices
of the graph would represent cities, and the edges would represent routes
between the cities. MST can be applied to optimize airline routes by finding
the least costly paths with no cycles.

Minimum spanning tree, can be constructed using any of the following two algorithms:

1. Kruskal’s algorithm and

2. Prim’s algorithm.

Both algorithms differ in their methodology, but both eventually end up with the MST.
Kruskal's algorithm uses edges, and Prim’s algorithm uses vertex connections in
determining the MST. In Prim’s algorithm at any instance of output it represents tree
whereas in Kruskal’s algorithm at any instance of output it may represent tree or not.

6.3.1. Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. picking
an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the
shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have
been added. Sometimes two or more edges may have the same cost.

The order in which the edges are chosen, in this case, does not matter. Different MST’s
may result, but they will all have the same total cost, which will always be the minimum
cost.

Kruskal’s Algorithm for minimal spanning tree is as follows:

1. Make the tree T empty.

2. Repeat the steps 3, 4 and 5 as long as T contains less than n - 1 edges and E is

not empty otherwise, proceed to step 6.

3. Choose an edge (v, w) from E of lowest cost.

4. Delete (v, w) from E.

5. If (v, w) does not create a cycle in T

then Add (v, w) to T

else discard (v, w)

6. If T contains fewer than n - 1 edges then print no spanning tree.

Example 1:

Construct the minimal spanning tree for the graph shown below:

Arrange all the edges in the increasing order of their costs:

Cost 10 15 20 25 30 35 40 45 50 55

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6)

10

45

 50

40
30 35

 25
55

20

15

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

EDGE COST
STAGES IN KRUSKAL’S

ALGORITHM
REMARKS

(1,

2)

10

The edge between vertices 1 and 2 is

1

2

3

the first edge selected. It is included in
the spanning tree.

4

5

 6

(3,

6)

15

Next, the edge between vertices 3 and 6

1

2

 is selected and included in the tree.

 3

4

5

 6

(4,

6)

20

1

2

3

The edge between vertices 4 and 6 is
next included in the tree.

4

5

 6

(2,

6)

25

1

2

3

The edge between vertices 2 and 6 is
considered next and included in the tree.

 4
5

 6

(1,

4)

30

Reject

The edge between the vertices 1 and 4 is
discarded as its inclusion creates a cycle.

(3,

5)

35

1

2

3

Finally, the edge between vertices 3 and
5 is considered and included in the tree
built. This completes the tree.

 4
5

The cost of the minimal spanning tree is

 6 105.

Example 2:

Construct the minimal spanning tree for the graph shown below:

Solution:

Arrange all the edges in the increasing order of their costs:

Cost 10 12 14 16 18 22 24 25 28

Edge (1, 6) (3, 4) (2, 7) (2, 3) (4, 7) (4, 5) (5, 7) (5, 6) (1, 2)

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

EDGE COST
STAGES IN KRUSKAL’S

ALGORITHM
REMARKS

(1,

6)

10

6

5

1

7

2

4

3

The edge between vertices 1 and 6 is the
first edge selected. It is included in the
spanning tree.

(3,

4)

12

1

2

Next, the edge between vertices 3 and 4
is selected and included in the tree.

 6

5

7

4

3

(2,

7)

14

1

The edge between vertices 2 and 7 is

 2 next included in the tree.

 6

7

 3

5

4

(2,

3)

16

1

The edge between vertices 2 and 3 is

 2 next included in the tree.

 6

7

 3

5

4

(4,

7)

18

Reject

The edge between the vertices 4 and 7 is
discarded as its inclusion creates a cycle.

(4,

5)

22

1

The edge between vertices 4 and 7 is

 2 considered next and included in the

6

3

tree.

 7

5

4

(5,

7)

24

Reject

The edge between the vertices 5 and 7 is
discarded as its inclusion creates a cycle.

(5,

6)

25

1

Finally, the edge between vertices 5 and

 2 6 is considered and included in the tree

6

3

built. This completes the tree.

 7 The cost of the minimal spanning tree is

5

4

 99.

6.3.2. MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM

A given graph can have many spanning trees. From these many spanning trees, we have
to select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is
labeled with a number (edge labels may signify lengths, weights other than costs).
Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as
small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for
finding an MST. In the spanning tree algorithm, any vertex not in the tree but connected
to it by an edge can be added. To find a Minimal cost spanning tree, we must be selective
- we must always add a new vertex for which the cost of the new edge is as small as
possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an
Minimal cost spanning tree. Prim's algorithm is an example of a greedy algorithm.

1

0

Prim’s Algorithm:

E is the set of edges in G. cost [1:n, 1:n] is the cost adjacency matrix of an n vertex
graph such that cost [i, j] is either a positive real number or if no edge (i, j) exists. A

minimum spanning tree is computed and stored as a set of edges in the array t [1:n-1,
1:2]. (t [i, 1], t [i, 2]) is an edge in the minimum-cost spanning tree. The final cost is
returned.

Algorithm Prim (E, cost, n, t)
{

Let (k, l) be an edge of minimum cost in E;
mincost := cost [k, l];
t [1, 1] := k; t [1, 2] := l;
for i :=1 to n do // Initialize near

if (cost [i, l] < cost [i, k]) then near [i] := l;
else near [i] := k;

near [k] :=near [l] := 0;

for i:=2 to n - 1 do // Find n - 2 additional edges for t.
{

Let j be an index such that near [j] 0 and
cost [j, near [j]] is minimum;

t [i, 1] := j; t [i, 2] := near [j];
mincost := mincost + cost [j, near [j]];

near [j] := 0
for k:= 1 to n do // Update near[].

if ((near [k] 0) and (cost [k, near [k]] > cost [k, j]))

then near [k] := j;
}

return mincost;
}

EXAMPLE:

Use Prim’s Algorithm to find a minimal spanning tree for the graph shown below
starting with the vertex A.

Solution:
0

3

The cost adjacency matrix is

3 6

0 2 4

2 0 1 4 2

4 1 0 2 4

 4 2 0 2

 2 2 0 1

 4 1 1

6

B
3

0 6

B 3

0 2

1 D

0 2

C

2 E
4

2 F

B 3 1

0 2

C

2

2

1

1

B 3

4

0 2

C 2

The stepwise progress of the prim’s algorithm is as follows:

Step 1:

A
F

C

Step 2:

A

F
C

Step 3:

D

E

A G

F

Step 4:

A G

Step 5:

D

A E G

F

 D Vertex A B C D E F G
 Status 0 1 1 1 1 1 1

 E
 G

Dist.
Next

0
*

3
A

6
A

A

A

A

A

44 D Vertex A B C D E F G
 Status 0 0 1 1 1 1 1

 E
 G

Dist.
Next

0
*

3
A

2
B

4
B

A

A

A

Vertex A B C D E F G

Status 0 0 0 1 1 1 1

Dist. 0 3 2 1 4 2

Next * A B C C C A

Vertex A B C D E F G

Status 0 0 0 0 1 1 1
Dist. 0 3 2 1 2 2 4
Next * A B C D C D

Vertex A B C D E F G

Status 0 0 0 0 1 0 1
Dist. 0 3 2 1 2 2 1
Next * A B C D C E

B 3 1 D

0 2

C

2 1

E

1 F

B 3 1 D

2 E

0 2

C

1

1 F

Step 6:

A G

Step 7:

A G

6.3. Reachability Matrix (Warshall’s Algorithm):

Warshall’s algorithm requires knowing which edges exist and which does not. It doesn’t
need to know the lengths of the edges in the given directed graph. This information is
conveniently displayed by adjacency matrix for the graph, in which a ‘1’ indicates the
existence of an edge and ‘0’ indicates non-existence.

It begins with the adjacency matrix for the given graph, which is called A0, and then
updates the matrix ‘n’ times, producing matrices called A1, A2,........... , An and then
stops.

In warshall’s algorithm the matrix Ai contains information about the existence of i–paths.
A one entry in the matrix Ai will correspond to the existence of i–paths and zero entry
will correspond to non-existence. Thus when the algorithm stops, the final matrix An,
contains the desired connectivity information.

A one entry indicates a pair of vertices, which are connected and zero entry indicates a
pair, which are not. This matrix is called a reachability matrix or path matrix for the
graph. It is also called the transitive closure of the original adjacency matrix.

The update rule for computing Ai from Ai-1 in warshall’s algorithm is:

Ai [x, y] = Ai-1 [x, y] ۷ (Ai-1 [x, i] ٨ Ai-1 [i, y]) ---- (1)

Ad jac e nc y M at rix W a rs h a ll’s A lg orit h m
A l l P a irs Rec h a b i l it y

Mat rix

Vertex A B C D E F G

Status 0 0 0 0 0 1 0
Dist. 0 3 2 1 2 1 1
Next * A B C D G E

Vertex A B C D E F G

Status 0 0 0 0 0 0 0
Dist. 0 3 2 1 2 1 1
Next * A B C D G E

3 0

1

3 0

1

0

0

1

Example 1:

Use warshall’s algorithm to calculate the reachability matrix for the graph:

4

1 4

5 6

7 11

1

2 3

7

We begin with the adjacency matrix of the graph ‘A0’

1 0 1

A
2 0 0

0

4 1 1

1 0

1

1 0

The first step is to compute ‘A1’ matrix. To do so we will use the updating rule – (1).

Before doing so, we notice that only one entry in A0 must remain one in A1, since in
Boolean algebra 1 + (anything) = 1. Since these are only nine zero entries in A0, there
are only nine entries in A0 that need to be updated.

A1[1, 1] = A0[1, 1] ۷ (A0[1, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[1, 4] = A0[1, 4] ۷ (A0[1, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0

A1[2, 1] = A0[2, 1] ۷ (A0[2, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[2, 2] = A0[2, 2] ۷ (A0[2, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 1] = A0[3, 1] ۷ (A0[3, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[3, 2] = A0[3, 2] ۷ (A0[3, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 3] = A0[3, 3] ۷ (A0[3, 1] ٨ A0[1, 3]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 4] = A0[3, 4] ۷ (A0[3, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0

A1[4, 4] = A0[4, 4] ۷ (A0[4, 1] ٨ A0[1, 4]) = 0 ۷ (1 ٨ 0) = 0

1 0

A
2 0

4 1

1 1 0

0 1

0 0

1 1 0

Next, A2 must be calculated from A1; but again we need to update the 0

entries, A2[1, 1] = A1[1, 1] ۷ (A1[1, 2] ٨ A1[2, 1]) = 0 ۷ (1 ٨ 0) = 0

A2[1, 4] = A1[1, 4] ۷ (A1[1, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1

A2[2, 1] = A1[2, 1] ۷ (A1[2, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0

A2[2, 2] = A1[2, 2] ۷ (A1[2, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0

A2[3, 1] = A1[3, 1] ۷ (A1[3, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0

0 0

A2[3, 2] = A1[3, 2] ۷ (A1[3, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0

3 0

1

0

3 0

1

0

3 0

1

0

2

3

4

A2[3, 3] = A1[3, 3] ۷ (A1[3, 2] ٨ A1[2, 3]) = 0 ۷ (0 ٨ 1) = 0

A2[3, 4] = A1[3, 4] ۷ (A1[3, 2] ٨ A1[2, 4]) = 0 ۷ (0 ٨ 1) = 0

A2[4, 4] = A1[4, 4] ۷ (A1[4, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1

1 0 1 1 1

A
2 0 0 1

0 0

4 1 1 1 1

This matrix has only seven 0 entries, and so to compute A3, we need to do only seven
computations.

A3[1, 1] = A2[1, 1] ۷ (A2[1, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0

A3[2, 1] = A2[2, 1] ۷ (A2[2, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0

A3[2, 2] = A2[2, 2] ۷ (A2[2, 3] ٨ A2[3, 2]) = 0 ۷ (1 ٨ 0) = 0

A3[3, 1] = A2[3, 1] ۷ (A2[3, 3] ٨ A2[3, 1]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 2] = A2[3, 2] ۷ (A2[3, 3] ٨ A2[3, 2]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 3] = A2[3, 3] ۷ (A2[3, 3] ٨ A2[3, 3]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 4] = A2[3, 4] ۷ (A2[3, 3] ٨ A2[3, 4]) = 0 ۷ (0 ٨ 0) = 0

1 0 1 1 1

A
2 0 0 1

0 0

4 1 1 1 1

Once A3 is calculated, we use the update rule to calculate A4 and stop. This matrix is
the reachability matrix for the graph.

A4[1, 1] = A3 [1, 1] ۷ (A3 [1, 4] ٨ A3 [4, 1]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[2, 1] = A3 [2, 1] ۷ (A3 [2, 4] ٨ A3 [4, 1]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[2, 2] = A3 [2, 2] ۷ (A3 [2, 4] ٨ A3 [4, 2]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[3, 1] = A3 [3, 1] ۷ (A3 [3, 4] ٨ A3 [4, 1]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 2] = A3 [3, 2] ۷ (A3 [3, 4] ٨ A3 [4, 2]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 3] = A3 [3, 3] ۷ (A3 [3, 4] ٨ A3 [4, 3]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 4] = A3 [3, 4] ۷ (A3 [3, 4] ٨ A3 [4, 4]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

1 1 1 1 1

A
2 1 1 1

0 0

4 1 1 1 1

Note that according to the algorithm vertex 3 is not reachable from itself 1. This is
because as can be seen in the graph, there is no path from vertex 3 back to itself.

6.4. Traversing a Graph

Many graph algorithms require one to systematically examine the nodes and edges of a
graph G. There are two standard ways to do this. They are:

 Breadth first traversal (BFT)

 Depth first traversal (DFT)

The BFT will use a queue as an auxiliary structure to hold nodes for future processing
and the DFT will use a STACK.

During the execution of these algorithms, each node N of G will be in one of three states,
called the status of N, as follows:

1. STATUS = 1 (Ready state): The initial state of the node N.

2. STATUS = 2 (Waiting state): The node N is on the QUEUE or STACK, waiting to
be processed.

3. STATUS = 3 (Processed state): The node N has been processed.

Both BFS and DFS impose a tree (the BFS/DFS tree) on the structure of graph. So, we
can compute a spanning tree in a graph. The computed spanning tree is not a minimum
spanning tree. The spanning trees obtained using depth first search are called depth first
spanning trees. The spanning trees obtained using breadth first search are called Breadth

first spanning trees.

6.5.1. Breadth first search and traversal:

The general idea behind a breadth first traversal beginning at a starting node A is as
follows. First we examine the starting node A. Then we examine all the neighbors of A.

Then we examine all the neighbors of neighbors of A. And so on. We need to keep track
of the neighbors of a node, and we need to guarantee that no node is processed more
than once. This is accomplished by using a QUEUE to hold nodes that are waiting to be
processed, and by using a field STATUS that tells us the current status of any node. The
spanning trees obtained using BFS are called Breadth first spanning trees.

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.

Initialize all nodes to the ready state (STATUS = 1).

1. Put the starting node A in QUEUE and change its status to the waiting
state (STATUS = 2).

2. Repeat the following steps until QUEUE is empty:

a. Remove the front node N of QUEUE. Process N and change the

status of N to the processed state (STATUS = 3).

b. Add to the rear of QUEUE all the neighbors of N that are in the
ready state (STATUS = 1), and change their status to the waiting
state (STATUS = 2).

3. Exit.

6.5.2. Depth first search and traversal:

Depth first search of undirected graph proceeds as follows: First we examine the starting
node V. Next an unvisited vertex 'W' adjacent to 'V' is selected and a depth first search

from 'W' is initiated. When a vertex 'U' is reached such that all its adjacent vertices have
been visited, we back up to the last vertex visited, which has an unvisited vertex 'W'
adjacent to it and initiate a depth first search from W. The search terminates when no
unvisited vertex can be reached from any of the visited ones.

This algorithm is similar to the inorder traversal of binary tree. DFT algorithm is similar
to BFT except now use a STACK instead of the QUEUE. Again field STATUS is used to tell
us the current status of a node.

The algorithm for depth first traversal on a graph G is as follows.

This algorithm executes a DFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Push the starting node A into STACK and change its status to the waiting state

(STATUS = 2).

3. Repeat the following steps until STACK is empty:

a. Pop the top node N from STACK. Process N and change the status of N to
the processed state (STATUS = 3).

b. Push all the neighbors of N that are in the ready state (STATUS = 1), and

change their status to the waiting state (STATUS = 2).
4. Exit.

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first
order and depth first order.

A Gra p h G

Adjacency list for graph G

Node Adjacency List

A F, C, B

B A, C, G

C A, B, D, E, F, G

D C, F, E, J

E C, D, G, J, K

F A, C, D

G B, C, E, K

J D, E, K

K E, G, J

Breadth-first search and traversal:

The steps involved in breadth first traversal are as follows:

Current
Node

QUEUE

Processed Nodes
Status

A B C D E F G J K

 1 1 1 1 1 1 1 1 1

 A 2 1 1 1 1 1 1 1 1

A F C B A 3 2 2 1 1 2 1 1 1

F C B D A F 3 2 2 2 1 3 1 1 1

C B D E G A F C 3 2 3 2 2 3 2 1 1

B D E G A F C B 3 3 3 2 2 3 2 1 1

D E G J A F C B D 3 3 3 3 2 3 2 2 1

E G J K A F C B D E 3 3 3 3 3 3 2 2 2

G J K A F C B D E G 3 3 3 3 3 3 3 2 2

J K A F C B D E G J 3 3 3 3 3 3 3 3 2

K EMPTY A F C B D E G J K 3 3 3 3 3 3 3 3 3

For the above graph the breadth first traversal sequence is: A F C B D E G J K.

Depth-first search and traversal:

The steps involved in depth first traversal are as follows:

Current
Node

Stack

Processed Nodes
Status

A B C D E F G J K

 1 1 1 1 1 1 1 1 1

 A 2 1 1 1 1 1 1 1 1

A B C F A 3 2 2 1 1 2 1 1 1

F B C D A F 3 2 2 2 1 3 1 1 1

D B C E J A F D 3 2 2 3 2 3 1 2 1

J B C E K A F D J 3 2 2 3 2 3 1 3 2

K B C E G A F D J K 3 2 2 3 2 3 2 3 3

G B C E A F D J K G 3 2 2 3 2 3 3 3 3

E B C A F D J K G E 3 2 2 3 3 3 3 3 3

C B A F D J K G E C 3 2 3 3 3 3 3 3 3

B EMPTY A F D J K G E C B 3 3 3 3 3 3 3 3 3

For the above graph the depth first traversal sequence is: A F D J K G E C B.

Example 2:

Traverse the graph shown below in breadth first order, depth first order and construct
the breadth first and depth first spanning trees.

A H I

B C G

D

E

F

T h e G r a p h G

J K

L M

If the depth first traversal is initiated from vertex A, then the vertices of graph G are
visited in the order: A F E G L J K M H I C D B. The depth first spanning tree is shown
in the figure given below:

Depth first Traversal

If the breadth first traversal is initiated from vertex A, then the vertices of graph G are
visited in the order: A F B C G E D L H J M I K. The breadth first spanning tree is shown
in the figure given below:

Breadth first traversal

Node Adjacency List

A F, B, C, G
B A
C A, G
D E, F
E G, D, F
F A, E, D
G A, L, E, H, J, C
H G, I
I H
J G, L, K, M
K J
L G, J, M

TheMadjace ncLy, liJst for the graph G

Example 3:

Traverse the graph shown below in breadth first order, depth first order and construct
the breadth first and depth first spanning trees.

Graph G

He a d No d e s

1

2

3

4

5

6

7

8

A d j a c e nc y l is t fo r g r a p h G

Depth first search and traversal:

If the depth first is initiated from vertex 1, then the vertices of graph G are visited in
the order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree is as follows:

Depth First Spanning Tree

Breadth first search and traversal:

If the breadth first search is initiated from vertex 1, then the vertices of G are visited in
the order: 1, 2, 3, 4, 5, 6, 7, 8. The breadth first spanning tree is as follows:

Breadth First Spanning Tree

EXCERCISES

1. Show that the sum of degrees of all vertices in an undirected graph is twice the
number of edges.

2. Show that the number of vertices of odd degree in a finite graph is even.

3. How many edges are contained in a complete graph of “n” vertices.

4. Show that the number of spanning trees in a complete graph of “n” vertices is 2n-1
– 1.

5. Prove that the edges explored by a breadth first or depth first traversal of a
connected graph from a tree.

6. Explain how existence of a cycle in an undirected graph may be detected by
traversing the graph in a depth first manner.

7. Write a “C” function to generate the incidence matrix of a graph from its

adjacency matrix.

8. Give an example of a connected directed graph so that a depth first traversal of
that graph yields a forest and not a spanning tree of the graph.

9. Rewrite the algorithms “BFSearch” and “DFSearch” so that it works on adjacency
matrix representation of graphs.

10. Write a “C” function to find out whether there is a path between any two vertices

in a graph (i.e. to compute the transitive closure matrix of a graph)

11. Write a “C” function to delete an existing edge from a graph represented by an
adjacency list.

12. Construct a weighted graph for which the minimal spanning trees produced by
Kruskal’s algorithm and Prim’s algorithm are different.

13. Describe the algorithm to find a minimum spanning tree T of a weighted graph G.
Find the minimum spanning tree T of the graph shown below.

6 5

A B C

1 8

4 2

D E

3

14. For the graph given below find the following:
a) Linked representation of the graph.
b) Adjacency list.
c) Depth first spanning tree.
d) Breadth first spanning tree.
e) Minimal spanning tree using Kruskal’s and Prim’s algorithms.

15. For the graph given below find the following:
f) Linked representation of the graph.
g) Adjacency list.
h) Depth first spanning tree.
i) Breadth first spanning tree.
j) Minimal spanning tree using Kruskal’s and Prim’s algorithms.

16. For the graph given below find the following:
k) Linked representation of the graph.
l) Adjacency list.
m) Depth first spanning tree.
n) Breadth first spanning tree.

o) Minimal spanning tree using Kruskal’s and Prim’s algorithms.

Multiple Choice Questions

1. How can the graphs be represented? [D]
A. Adjacency matrix

B. Adjacency list

C. Incidence matrix

D. All of the above

2. The depth-first traversal in graph is analogous to tree traversal: [C]

A. In-order
B. Post-order

C. Pre-order
D. Level order

3. The children of a same parent node are called as: [C]

A. adjacent node
B. non-leaf node

C. Sibblings
D. leaf node

4. Complete graphs with n nodes will have edges. [C]
A. n - 1
B. n/2

C. n(n-1)/2
D. (n – 1)/2

5. A graph with no cycle is called as:
A. Sub-graph

C. Acyclic graph

[C]

B. Directed graph D. none of the above

6. The maximum number of nodes at
A. n
B. 2n

any level is:
C. n + 1
D. 2n

[B]

FIGURE 1 and its adjacency list

7. For the figure 1 shown above, the depth first spanning tree visiting
sequence is:

[B]

A. A B C D E F G
B. A B D C F G E

C. A B C D E F G
D. none of the above

8. For the figure 1 shown above, the breadth first spanning tree visiting
sequence is:

[B]

A. A B D C F G E
B. A B C D E F G

C. A B C D E F G
D. none of the above

9. Which is the correct order for Kruskal’s minimum spanning tree algorithm
to add edges to the minimum spanning tree for the figure 1 shown
above:

[B]

A. (A, B) then (A, C) then (A, D) then (D, E) then (C, F) then (D, G)

B. (A, D) then (E, G) then (B, D) then (D, E) then (F, G) then (A, C)

Node Adjacency List

A B C D

B A D E

C A D F

D A B C E F G

E B D G

F C D G

G F D E

C. both A and B

D. none of the above

10. For the figure 1 shown above, the cost of the minimal spanning tree is:

[

A

]

A. 57
B. 68

C. 48
D. 32

11. A simple graph has no loops. What other property must a simple graph
have?

[D]

A. It must be directed.

B. It must be undirected.

C. It must have at least one vertex.

D. It must have no multiple edges.

12. Suppose you have a directed graph representing all the flights that an
airline flies. What algorithm might be used to find the best sequence of
connections from one city to another?

[D]

A. Breadth first search.
B. Depth first search.

C. A cycle-finding algorithm.
D. A shortest-path algorithm.

13. If G is an directed graph with 20 vertices, how many boolean values will
be needed to represent G using an adjacency matrix?

[D]

A. 20
B. 40

C. 200
D. 400

14. Which graph representation allows the most efficient determination of
the existence of a particular edge in a graph?

[B]

A. An adjacency matrix.

B. Edge lists.

C. Incidence matrix

D. none of the above

15. What graph traversal algorithm uses a queue to keep track of vertices
which need to be processed?

[A]

A. Breadth-first search.
B. Depth-first search.

C Level order search
D. none of the above

16. What graph traversal algorithm uses a stack to keep track of vertices
which need to be processed?

[B]

A. Breadth-first search.

B. Depth-first search.

C Level order search

D. none of the above

17. What is the expected number of operations needed to loop through all
the edges terminating at a particular vertex given an adjacency matrix
representation of the graph? (Assume n vertices are in the graph and m
edges terminate at the desired node.)

[D]

A. O(m)
B. O(n)

C. O(m²)
D. O(n²)

18. What is the expected number of operations needed to loop through all
the edges terminating at a particular vertex given an adjacency list
representation of the graph? (Assume n vertices are in the graph and m
edges terminate at the desired node.)

[A]

19. 19.

A. O(m)
B. O(n)

C. O(m²)
D. O(n²)

 [B]

FIGURE 3

For the figure 3, starting at vertex A, which is a correct order for Prim’s
minimum spanning tree algorithm to add edges to the minimum
spanning tree?

A. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D)
B. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E)
C. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E)

D. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F)

20. For the figure 3, which is a correct order for Kruskal’s minimum spanning

tree algorithm to add edges to the minimum spanning tree?
A. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D)

B. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E)
C. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E)
D. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F)

[C]

21. Which algorithm does not construct an in-tree as part of its processing?
A. Dijkstra’s Shortest Path Algorithm
B. Prim’s Minimum Spanning Tree Algorithm
C. Kruskal’s Minimum Spanning Tree Algorithm

D. The Depth-First Search Trace Algorithm

[

]

22. The worst-case running time of Kruskal’s minimum-cost spanning tree
algorithm on a graph with n vertices and m edges is:
A. C.
B. D.

[

]

23. An adjacency matrix representation of a graph cannot contain
information of:

[D]

A. Nodes
B. Edges

C. Direction of edges
D. Parallel edges

Node Adjacency List

A D

B A C

C G D F

D ----

E C D

F E A

G B

FIGURE 4 and its adjacency list

24. For the figure 4, which edge does not occur in the depth first spanning

tree resulting from depth first search starting at node B:

[B]

A. F E
B. E C

C. C G
D. C F

25. The set of all edges generated by DFS tree starting at node B is: [A]

A. B A D C G F E
B. A D

C. B A C D G F E
D. Cannot be generated

26. The set of all edges generated by BFS tree starting at node B is: [C]

A. B A D C G F E
B. A D

C. B A C D G F E
D. Cannot be generated

Searching and Sorting

There are basically two aspects of computer programming. One is data
organization also commonly called as data structures. Till now we have seen
about data structures and the techniques and algorithms used to access them.
The other part of computer programming involves choosing the appropriate
algorithm to solve the problem. Data structures and algorithms are linked each
other. After developing programming techniques to represent information, it
is logical to proceed to manipulate it. This chapter introduces this important
aspect of problem solving.

Searching is used to find the location where an element is available. There are two types
of search techniques. They are:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure. It is a
way in which the elements are organized systematically for some purpose. For example,
a dictionary in which words is arranged in alphabetical order and telephone director in
which the subscriber names are listed in alphabetical order. There are many sorting
techniques out of which we study the following.

1. Bubble sort

2. Quick sort

3. Selection sort and

4. Heap sort

There are two types of sorting techniques:

1. Internal sorting

2. External sorting

If all the elements to be sorted are present in the main memory then such sorting is
called internal sorting on the other hand, if some of the elements to be sorted are kept
on the secondary storage, it is called external sorting. Here we study only internal
sorting techniques.

7.1. Linear Search:

This is the simplest of all searching techniques. In this technique, an ordered or
unordered list will be searched one by one from the beginning until the desired element
is found. If the desired element is found in the list then the search is successful otherwise
unsuccessful.

Suppose there are ‘n’ elements organized sequentially on a List. The number of
comparisons required to retrieve an element from the list, purely depends on where the
element is stored in the list. If it is the first element, one comparison will do; if it is
second element two comparisons are necessary and so on. On an average you need

[(n+1)/2] comparison’s to search an element. If search is not successful, you would need
’n’ comparisons.

The time complexity of linear search is O(n).

Algorithm:

Let array a[n] stores n elements. Determine whether element ‘x’ is present or not.

linsrch(a[n], x)
{

index = 0;
flag = 0;

while (index < n) do
{

if (x == a[index])
{

flag = 1;
break;

}
index ++;

}

if(flag == 1)
printf(“Data found at %d position“, index);

else

}

printf(“data not found”);

Example 1:

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20

If we are searching for: 45, we’ll look at 1 element before success

39, we’ll look at 2 elements before success
8, we’ll look at 3 elements before success
54, we’ll look at 4 elements before success
77, we’ll look at 5 elements before success

38 we’ll look at 6 elements before success
24, we’ll look at 7 elements before success
16, we’ll look at 8 elements before success
4, we’ll look at 9 elements before success
7, we’ll look at 10 elements before success
9, we’ll look at 11 elements before success
20, we’ll look at 12 elements before success

For any element not in the list, we’ll look at 12 elements before failure.

Example 2:

Let us illustrate linear search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8

Elements -15 -6 0 7 9 23 54 82 101

Searching different elements is as follows:

1. Searching for x = 7 Search successful, data found at 3rd position.

2. Searching for x = 82 Search successful, data found at 7th position.

3. Searching for x = 42 Search un-successful, data not found.

7.1.1. A non-recursive program for Linear Search:

include <stdio.h>
include <conio.h>

main()
{

int number[25], n, data, i, flag = 0;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements: ");
for(i = 0; i < n; i++)

scanf("%d", &number[i]);

printf("\n Enter the element to be Searched: ");
scanf("%d", &data);
for(i = 0; i < n; i++)
{

if(number[i] == data)
{

flag = 1;
break;

}
}
if(flag == 1)

printf("\n Data found at location: %d", i+1);

else

}

printf("\n Data not found ");

7.1.2. A Recursive program for linear search:

include <stdio.h>
include <conio.h>

void linear_search(int a[], int data, int position, int n)
{

if(position < n)

{
if(a[position] == data)

printf("\n Data Found at %d ", position);

}
else

else

linear_search(a, data, position + 1, n);

}

void main()
{

printf("\n Data not found");

int a[25], i, n, data;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements: ");
for(i = 0; i < n; i++)
{

scanf("%d", &a[i]);
}

printf("\n Enter the element to be seached: ");
scanf("%d", &data);

linear_search(a, data, 0, n);
getch();

}

7.2. BINARY SEARCH

If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn . When
we are given a element ‘x’, binary search is used to find the corresponding element from
the list. In case ‘x’ is present, we have to determine a value ‘j’ such that a[j] = x
(successful search). If ‘x’ is not in the list then j is to set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and

compare ‘x’ with a[mid]. If x = a[mid] then the desired record has been found. If
x < a[mid] then ‘x’ must be in that portion of the file that precedes a[mid]. Similarly, if
a[mid] > x, then further search is only necessary in that part of the file which follows
a[mid].

If we use recursive procedure of finding the middle key a[mid] of the un-searched portion
of a file, then every un-successful comparison of ‘x’ with a[mid] will eliminate roughly

half the un-searched portion from consideration.

Since the array size is roughly halved after each comparison between ‘x’ and a[mid], and
since an array of length ‘n’ can be halved only about log2n times before reaching a trivial
length, the worst case complexity of Binary search is about log2n.

Algorithm:

Let array a[n] of elements in increasing order, n 0, determine whether ‘x’ is present,
and if so, set j such that x = a[j] else return 0.

binsrch(a[], n, x)
{

low = 1; high = n;
while (low < high) do

{
mid = (low + high)/2
if (x < a[mid])

high = mid – 1;
else if (x > a[mid])

low = mid + 1;
else return mid;

}

return 0;
}

low and high are integer variables such that each time through the loop either ‘x’ is found
or low is increased by at least one or high is decreased by at least one. Thus we have
two sequences of integers approaching each other and eventually low will become greater
than high causing termination in a finite number of steps if ‘x’ is not present.

Example 1:

Let us illustrate binary search on the following 12 elements:

Index 1 2 3 4 5 6 7 8 9 10 11 12

Elements 4 7 8 9 16 20 24 38 39 45 54 77

If we are searching for x = 4: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, found

If we are searching for x = 7: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4
low = 2, high = 2, mid = 4/2 = 2, check 7, found

If we are searching for x = 8: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8, found

If we are searching for x = 9: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9, found

If we are searching for x = 16: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9

low = 5, high = 5, mid = 10/2 = 5, check 16, found

If we are searching for x = 20: (This needs 1 comparison)
low = 1, high = 12, mid = 13/2 = 6, check 20, found

If we are searching for x = 24: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 8, mid = 15/2 = 7, check 24, found

If we are searching for x = 38: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 8, mid = 15/2 = 7, check 24

low = 8, high = 8, mid = 16/2 = 8, check 38, found

If we are searching for x = 39: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39, found

If we are searching for x = 45: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39

low = 10, high = 12, mid = 22/2 = 11, check 54
low = 10, high = 10, mid = 20/2 = 10, check 45, found

If we are searching for x = 54: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54, found

If we are searching for x = 77: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54

low = 12, high = 12, mid = 24/2 = 12, check 77, found

The number of comparisons necessary by search element:

20 – requires 1 comparison;

8 and 39 – requires 2 comparisons;
4, 9, 24, 54 – requires 3 comparisons and
7, 16, 38, 45, 77 – requires 4 comparisons

Summing the comparisons, needed to find all twelve items and dividing by 12, yielding
37/12 or approximately 3.08 comparisons per successful search on the average.

Example 2:

Let us illustrate binary search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8

Elements -15 -6 0 7 9 23 54 82 101

Solution:

The number of comparisons required for searching different elements is as follows:

1. If we are searching for x = 101: (Number of comparisons = 4)
low high mid
1 9 5
6 9 7

8 9 8
9 9 9

 found

2. Searching for x = 82: (Number of comparisons = 3)
low high mid
1 9 5
6 9 7
8 9 8

 found

3. Searching for x = 42: (Number of comparisons = 4)

4. Searching for x = -14: (Number

2 1 not found

Continuing in this manner the number of element comparisons needed to find each of
nine elements is:

Index 1 2 3 4 5 6 7 8 9

Elements -15 -6 0 7 9 23 54 82 101

Comparisons 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the comparisons
needed to find all nine items and dividing by 9, yielding 25/9 or approximately 2.77
comparisons per successful search on the average.

There are ten possible ways that an un-successful search may terminate depending upon
the value of x.

If x < a(1), a(1) < x < a(2), a(2) < x < a(3), a(5) < x < a(6), a(6) < x < a(7) or a(7)

< x < a(8) the algorithm requires 3 element comparisons to determine that ‘x’ is not

present. For all of the remaining possibilities BINSRCH requires 4 element comparisons.

Thus the average number of element comparisons for an unsuccessful search is:

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4

Time Complexity:

The time complexity of binary search in a successful search is O(log n) and for an
unsuccessful search is O(log n).

low high mid
1 9 5

6 9 7
6 6 6
7 6 not found

of comparisons = 3)
low high mid
1 9 5

1 4 2
1 1 1

7.2.1. A non-recursive program for binary search:

include <stdio.h>
include <conio.h>

main()
{

int number[25], n, data, i, flag = 0, low, high, mid;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);

printf("\n Enter the elements in ascending order: ");
for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
low = 0; high = n-1;
while(low <= high)

{
mid = (low + high)/2;
if(number[mid] == data)
{

}
else
{

flag = 1;
break;

if(data < number[mid])
high = mid - 1;

else

}
}

low = mid + 1;

if(flag == 1)
printf("\n Data found at location: %d", mid + 1);

else

}

printf("\n Data Not Found ");

7.2.2. A recursive program for binary search:

include <stdio.h>
include <conio.h>

void bin_search(int a[], int data, int low, int high)
{

int mid ;
if(low <= high)
{

mid = (low + high)/2;

if(a[mid] == data)
printf("\n Element found at location: %d ", mid + 1);

else
{

if(data < a[mid])

bin_searc h(a, data, low, mid-1);

else

}

}
else

bin_search(a, data, mid+1, high);

}
void main()
{

printf("\n Element not found");

int a[25], i, n, data;

clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");
for(i = 0; i < n; i++)

scanf("%d", &a[i]);

printf("\n Enter the element to be searched: ");
scanf("%d", &data);
bin_search(a, data, 0, n-1);
getch();

}

7.3. Bubble Sort:

The bubble sort is easy to understand and program. The basic idea of bubble sort is to
pass through the file sequentially several times. In each pass, we compare each element
in the file with its successor i.e., X[i] with X[i+1] and interchange two element when they
are not in proper order. We will illustrate this sorting technique by taking a specific
example. Bubble sort is also called as exchange sort.

Example:

Consider the array x[n] which is stored in memory as shown below:

X[0] X[1] X[2] X[3] X[4] X[5]

33 44 22 11 66 55

Suppose we want our array to be stored in ascending order. Then we pass through the
array 5 times as described below:

Pass 1: (first element is compared with all other elements).

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1]

if X[i] > X[i+1]. The process is shown below:

X[0] X[1] X[2] X[3] X[4] X[5] Remarks

33

33

44

22

22

22

44

11

11

11

44

44

44

66

66

55

55

55

66

66

The biggest number 66 is moved to (bubbled up) the right most position in the array.

Pass 2: (second element is compared).

We repeat the same process, but this time we don’t include X[5] into our comparisons.
i.e., we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] if

X[i] > X[i+1]. The process is shown below:

X[0] X[1] X[2] X[3] X[4] Remarks

33 22 11 44 55

22 33

 11 33

 33 44

 44 55

22 11 33 44 55

The second biggest number 55 is moved now to X[4].

Pass 3: (third element is compared).

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this,
we move the third biggest number 44 to X[3].

X[0] X[1] X[2] X[3] Remarks

22 11 33 44

11 22

 22 33

 33 44

11 22 33 44

Pass 4: (fourth element is compared).

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth
biggest number 33 to X[2].

X[0] X[1] X[2] Remarks

11 22 33

11 22

 22 33

Pass 5: (fifth element is compared).

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the

fifth biggest number 22 to X[1]. At this time, we will have the smallest number 11 in
X[0]. Thus, we see that we can sort the array of size 6 in 5 passes.

For an array of size n, we required (n-1) passes.

7.3.1. Program for Bubble Sort:

#include <stdio.h>
#include <conio.h>

void bubblesort(int x[], int n)
{

int i, j, temp;
for (i = 0; i < n; i++)
{

for (j = 0; j < n–i-1 ; j++)
{

if (x[j] > x[j+1])
{

}
}

}
}

main()
{

temp = x[j];
x[j] = x[j+1];
x[j+1] = temp;

int i, n, x[25];

clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter Data:");
for(i = 0; i < n ; i++)

scanf("%d", &x[i]);
bubblesort(x, n);
printf ("\n Array Elements after sorting: ");
for (i = 0; i < n; i++)

printf ("%5d", x[i]);
}

Time Complexity:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1)
comparisons on each pass. Thus the total number of comparisons is (n-1) * (n-1) = n2
– 2n + 1, which is O(n2). Therefore bubble sort is very inefficient when there are more
elements to sorting.

7.4. Selection Sort:

Selection sort will not require no more than n-1 interchanges. Suppose x is an array of
size n stored in memory. The selection sort algorithm first selects the smallest element
in the array x and place it at array position 0; then it selects the next smallest element
in the array x and place it at array position 1. It simply continues this procedure until it

places the biggest element in the last position of the array.

The array is passed through (n-1) times and the smallest element is placed in its
respective position in the array as detailed below:

Pass 1: Find the location j of the smallest element in the array x [0], x[1], x[n-1],
and then interchange x[j] with x[0]. Then x[0] is sorted.

Pass 2: Leave the first element and find the location j of the smallest element in the sub-
array x[1], x[2], x[n-1], and then interchange x[1] with x[j]. Then x[0],
x[1] are sorted.

Pass 3: Leave the first two elements and find the location j of the smallest element in
the sub-array x[2], x[3], x[n-1], and then interchange x[2] with x[j]. Then
x[0], x[1], x[2] are sorted.

Pass (n-1): Find the location j of the smaller of the elements x[n-2] and x[n-1], and then
interchange x[j] and x[n-2]. Then x[0], x[1], x[n-2] are sorted. Of course,
during this pass x[n-1] will be the biggest element and so the entire array is
sorted.

Time Complexity:

In general we prefer selection sort in case where the insertion sort or the bubble sort
requires exclusive swapping. In spite of superiority of the selection sort over bubble sort
and the insertion sort (there is significant decrease in run time), its efficiency is also
O(n2) for n data items.

Example:

Let us consider the following example with 9 elements to analyze selection Sort:

1 2 3 4 5 6 7 8 9 Remarks

65 70 75 80 50 60 55 85 45 find the first smallest element

i j swap a[i] & a[j]

45 70 75 80 50 60 55 85 65 find the second smallest element

 i j swap a[i] and a[j]

45 50 75 80 70 60 55 85 65 Find the third smallest element

 i j swap a[i] and a[j]

45 50 55 80 70 60 75 85 65 Find the fourth smallest element

 i j swap a[i] and a[j]

45 50 55 60 70 80 75 85 65 Find the fifth smallest element

 i j swap a[i] and a[j]

45 50 55 60 65 80 75 85 70 Find the sixth smallest element

 i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the seventh smallest element

 i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the eighth smallest element

 i J swap a[i] and a[j]

45 50 55 60 65 70 75 80 85 The outer loop ends.

7.4.1. Non-recursive Program for selection sort:

include<stdio.h>
include<conio.h>

void selectionSort(int low, int high);

int a[25];

int main()
{

int num, i= 0;
clrscr();
printf("Enter the number of elements: ");
scanf("%d", &num);
printf("\nEnter the elements:\n");
for(i=0; i < num; i++)

scanf("%d", &a[i]);

selectionSort(0, num - 1);
printf("\nThe elements after sorting are: ");
for(i=0; i< num; i++)

printf("%d ", a[i]);
return 0;

}

void selectionSort(int low, int high)
{

int i=0, j=0, temp=0, minindex;
for(i=low; i <= high; i++)
{

minindex = i;
for(j=i+1; j <= high; j++)

{

if(a[j] < a[minindex])
minindex = j;

}

temp = a[i];
a[i] = a[minindex];
a[minindex] = temp;

}
}

7.4.2. Recursive Program for selection sort:

#include <stdio.h>
#include<conio.h>

int x[6] = {77, 33, 44, 11, 66};
selectionSort(int);

main()
{

int i, n = 0;
clrscr();
printf (" Array Elements before sorting: ");
for (i=0; i<5; i++)

printf ("%d ", x[i]);
selectionSort(n); /* call selection sort */
printf ("\n Array Elements after sorting: ");
for (i=0; i<5; i++)

printf ("%d ", x[i]);

}

selectionSort(int n)
{

int k, p, temp, min;
if (n== 4)

return (-1);
min = x[n];
p = n;
for (k = n+1; k<5; k++)
{

if (x[k] <min)
{

min = x[k];
p = k;

}
}

temp = x[n]; /* interchange x[n] and x[p] */
x[n] = x[p];
x[p] = temp;

n++ ;
selectionSort(n);

}

7.5. Quick Sort:

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960’s. It was one of the
first most efficient sorting algorithms. It is an example of a class of algorithms that work
by “divide and conquer” technique.

The quick sort algorithm partitions the original array by rearranging it into two groups.
The first group contains those elements less than some arbitrary chosen value taken
from the set, and the second group contains those elements greater than or equal to the

chosen value. The chosen value is known as the pivot element. Once the array has been
rearranged in this way with respect to the pivot, the same partitioning procedure is
recursively applied to each of the two subsets. When all the subsets have been partitioned
and rearranged, the original array is sorted.

The function partition() makes use of two pointers up and down which are moved toward

each other in the following fashion:

1. Repeatedly increase the pointer ‘up’ until a[up] >= pivot.

2. Repeatedly decrease the pointer ‘down’ until a[down] <= pivot.

3. If down > up, interchange a[down] with a[up]

4. Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If

‘up’ pointer crosses ‘down’ pointer, the position for pivot is found and place
pivot element in ‘down’ pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort function
sorts all elements in an array ‘a’ between positions ‘low’ and ‘high’.

1. It terminates when the condition low >= high is satisfied. This condition will

be satisfied only when the array is completely sorted.

2. Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it
calls the partition function to find the proper position j of the element x[low]
i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], x[j-1]
and x[j+1], x[j+2], x[high].

3. It calls itself recursively to sort the left sub-array x[low], x[low+1],

x[j-1] between positions low and j-1 (where j is returned by the partition
function).

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high]
between positions j+1 and high.

The time complexity of quick sort algorithm is of O(n log n).

Algorithm

Sorts the elements a[p], ,a[q] which reside in the global array a[n] into ascending
order. The a[n + 1] is considered to be defined and must be greater than all elements in
a[n]; a[n + 1] = +

quicksort (p, q)
{

if (p < q) then
{

call j = PARTITION(a, p, q+1); // j is the position of the partitioning element

call quicksort(p, j – 1);
call quicksort(j + 1 , q);

}
}

partition(a, m, p)

{
v = a[m]; up = m; down = p; // a[m] is the partition element

do
{

repeat
up = up + 1;

until (a[up] > v);

repeat
down = down – 1;

until (a[down] < v);
if (up < down) then call interchange(a, up, down);

} while (up > down);

a[m] = a[down];
a[down] = v;
return (down);

}

interchange(a, up, down)
{

p = a[up];
a[up] = a[down];
a[down] = p;

}

Example:

Select first element as the pivot element. Move ‘up’ pointer from left to right in search of

an element larger than pivot. Move the ‘down’ pointer from right to left in search of an
element smaller than pivot. If such elements are found, the elements are swapped.

This process continues till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer
crosses ‘down’ pointer, the position for pivot is found and interchange pivot and element
at ‘down’ position.

Let us consider the following example with 13 elements to analyze quick sort:

1 2 3 4 5 6 7 8 9 10 11 12 13 Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot

up

down
 swap up &

down

pivot 04 79

pivot

up

down
 swap up &

down

pivot 02 57

pivot

down up
 swap pivot

& down

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)

pivot

down up
 swap pivot

& down

(02 08 16 06 04) 24

pivot,
down

up
 swap pivot

& down

02 (08 16 06 04)

pivot up

down

 swap up &
down

 pivot 04 16

 pivot down Up

(06 04) 08 (16)

 swap pivot
& down

 pivot down up

(04) 06

 swap pivot
& down

 04

pivot,
down,

up

 16
pivot,
down,

up

(02 04 06 08 16 24) 38

(56 57 58 79 70 45)

pivot up

down

swap up &
down

 pivot 45 57

pivot down up

 swap pivot
& down

 (45) 56 (58 79 70 57)

 45

pivot,
down,

up

swap pivot
& down

 (58
pivot

79
up 70

57)
down

swap up &
down

 57 79

 down up

(57) 58 (70 79)

swap pivot
& down

 57
pivot,
down,

up

 (70 79)

 pivot,
down

up
swap pivot

& down
 70

 79

pivot,
down,

up

(45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

7.5.1. Recursive program for Quick Sort:

include<stdio.h>
include<conio.h>

void quicksort(int, int);
int partition(int, int);
void interchange(int, int);
int array[25];

int main()
{

int num, i = 0;
clrscr();
printf("Enter the number of elements: ");
scanf("%d", &num);

printf("Enter the elements: ");
for(i=0; i < num; i++)

scanf("%d", &array[i]);
quicksort(0, num -1);
printf("\nThe elements after sorting are: ");

for(i=0; i < num; i++)
printf("%d ", array[i]);

return 0;
}

void quicksort(int low, int high)
{

int pivotpos;
if(low < high)
{

pivotpos = partition(low, high + 1);

quicksort(low, pivotpos - 1);
quicksort(pivotpos + 1, high);

}

}

int partition(int low, int high)
{

int pivot = array[low];
int up = low, down = high;

do
{

do
up = up + 1;

while(array[up] < pivot);

do
down = down - 1;

while(array[down] > pivot);

if(up < down)
interchange(up, down);

} while(up < down);
array[low] = array[down];
array[down] = pivot;
return down;

}

void interchange(int i, int j)
{

int temp;
temp = array[i];
array[i] = array[j];

array[j] = temp;
}

7.6. Priority Queue, Heap and Heap Sort:

Heap is a data structure, which permits one to insert elements into a set and also to find
the largest element efficiently. A data structure, which provides these two operations, is

called a priority queue.

7.6.1. Max and Min Heap data structures:

A max heap is an almost complete binary tree such that the value of each node is greater
than or equal to those in its children.

A min heap is an almost complete binary tree such that the value of each node is less
than or equal to those in its children.

7.6.2. Representation of Heap Tree:

Since heap is a complete binary tree, a heap tree can be efficiently represented using
one dimensional array. This provides a very convenient way of figuring out where children
belong to.

 The root of the tree is in location 1.

 The left child of an element stored at location i can be found in location 2*i.

 The right child of an element stored at location i can be found in location 2*i+1.

 The parent of an element stored at location i can be found at location floor(i/2).

The elements of the array can be thought of as lying in a tree structure. A heap tree
represented using a single array looks as follows:

X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8]

65 45 60 40 25 50 55 30

x[7]

x[8]

7.6.3. Operations on heap tree:

The major operations required to be performed on a heap tree:

1. Insertion,

2. Deletion and

3. Merging.

Insertion into a heap tree:

This operation is used to insert a node into an existing heap tree satisfying the properties
of heap tree. Using repeated insertions of data, starting from an empty heap tree, one
can build up a heap tree.

Let us consider the heap (max) tree. The principle of insertion is that, first we have to
adjoin the data in the complete binary tree. Next, we have to compare it with the data

in its parent; if the value is greater than that at parent then interchange the values. This
will continue between two nodes on path from the newly inserted node to the root node
till we get a parent whose value is greater than its child or we reached the root.

For illustration, 35 is added as the right child of 80. Its value is compared with its parent’s
value, and to be a max heap, parent’s value greater than child’s value is satisfied, hence
interchange as well as further comparisons are no more required.

As another illustration, let us consider the case of insertion 90 into the resultant heap
tree. First, 90 will be added as left child of 40, when 90 is compared with 40 it requires
interchange. Next, 90 is compared with 80, another interchange takes place. Now, our
process stops here, as 90 is now in root node. The path on which these comparisons and
interchanges have taken places are shown by dashed line.

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:

Max_heap_insert (a, n)
{

//inserts the value in a[n] into the heap which is stored at a[1] to a[n-1]
int i, n;
i = n;
item = a[n];
while ((i > 1) and (a[i/2] < item) do
{

a[i] = a[i/2] ; // move the parent down
i = i/2 ;

}

a[i] = item ;

return true ;
}

Example:

Form a heap using the above algorithm for the data: 40, 80, 35, 90, 45, 50, 70.

1. Insert 40:

2. Insert 80:

40

3. Insert 35:

4. Insert 90:

90

80

 90

 80

 40 35

40

 90

5. Insert 45:

6. Insert 50:

50

7. Insert 70:

50

Deletion of a node from heap tree:

Any node can be deleted from a heap tree. But from the application point of view, deleting
the root node has some special importance. The principle of deletion is as follows:

 Read the root node into a temporary storage say, ITEM.

 Replace the root node by the last node in the heap tree. Then re-heap the
tree as stated below:

 Let newly modified root node be the current node. Compare its value

with the value of its two child. Let X be the child whose value is the
largest. Interchange the value of X with the value of the current node.

 Make X as the current node.

 Continue re-heap, if the current node is not an empty node.

The algorithm for the above is as follows:

delmax (a, n, x)
// delete the maximum from the heap a[n] and store it in x
{

if (n = 0) then
{

write (“heap is empty”);
return false;

}
x = a[1]; a[1] = a[n];

adjust (a, 1, n-1);
return true;

}

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to
form a single heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i ;
item = a[i] ;
while (j < n) do
{

if ((j < n) and (a (j) < a (j + 1)) then j j + 1;

// compare left and right child and let j be the larger child
if (item > a (j)) then break;

// a position for item is found
else a[j / 2] = a[j] // move the larger child up a level

j = 2 * j;
}
a [j / 2] = item;

}

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by

26 and this node with data 26 is removed from the tree. Next 26 at root node is
compared with its two child 45 and 63. As 63 is greater, they are interchanged. Now,

26 is compared with its children, namely, 57 and 42, as 57 is greater, so they are
interchanged. Now, 26 appears as the leave node, hence re-heap is completed.

 26 63

 9 9
 26

57

45 6 3

26

35 29 5 7 42

27 12 24 26

De le t in g th e n o d e w i th d a ta 9 9 Af ter De le t i o n of n o d e w ith d a ta 9 9

7.6.4. Merging two heap trees:

Consider, two heap trees H1 and H2. Merging the tree H2 with H1 means to include all
the node from H2 to H1. H2 may be min heap or max heap and the resultant tree will be
min heap if H1 is min heap else it will be max heap. Merging operation consists of two
steps: Continue steps 1 and 2 while H2 is not empty:

1. Delete the root node, say x, from H2. Re-heap H2.

2. Insert the node x into H1 satisfying the property of H1.

H1: max heap

+
H2: min heap

96

93 67

80 92

38 59 45 92

13 19

Resultant max heap after merging H1 and H2

7.6.5. Application of heap tree:

They are two main applications of heap trees known are:

1. Sorting (Heap sort) and

2. Priority queue implementation.

7.7. HEAP SORT:

A heap sort algorithm works by first organizing the data to be sorted into a special type
of binary tree called a heap. Any kind of data can be sorted either in ascending order or

in descending order using heap tree. It does this with the following steps:

1. Build a heap tree with the given set of data.

2. a. Remove the top most item (the largest) and replace it with the last

element in the heap.

b. Re-heapify the complete binary tree.

c. Place the deleted node in the output.

3. Continue step 2 until the heap tree is empty.

Algorithm:

This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non-
decreasing order. First transform the elements into a heap.

heapsort(a, n)
{

heapify(a, n);
for i = n to 2 by – 1 do
{

temp = a[i];
a[i] = a[1];
a[1] = temp;
adjust (a, 1, i – 1);

}

}

heapify (a, n)
//Readjust the elements in a[n] to form a heap.

{
for i n/2 to 1 by – 1 do adjust (a, i, n);

}

adjust (a, i, n)

// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to
form a single heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i ;

item = a[i] ;
while (j < n) do
{

if ((j < n) and (a (j) < a (j + 1)) then j j + 1;

// compare left and right child and let j be the larger child
if (item > a (j)) then break;

// a position for item is found

else a[j / 2] = a[j] // move the larger child up a level

j = 2 * j;
}
a [j / 2] = item;

}

Time Complexity:

Each ‘n’ insertion operations takes O(log k), where ‘k’ is the number of elements in the
heap at the time. Likewise, each of the ‘n’ remove operations also runs in time O(log k),

where ‘k’ is the number of elements in the heap at the time.

Since we always have k ≤ n, each such operation runs in O(log n) time in the worst case.

Thus, for ‘n’ elements it takes O(n log n) time, so the priority queue sorting algorithm
runs in O(n log n) time when we use a heap to implement the priority queue.

Example 1:

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data
using heap sort.

Solution:

First form a heap tree from the given set of data and then sort by repeated deletion
operation:

1. Exchange root 90 with the last element 35 of the array and re-heapify

35

2. Exchange root 80 with the last element 50 of the array and re-heapify

70

 50

50
45 70

40 35 80 90

3. Exchange root 70 with the last element 35 of the array and re-heapify

50

 35

45

35

 50

40 70 80 90

4. Exchange root 50 with the last element 40 of the array and re-heapify

45
 40

40

 45 35

50 70 80 90

5. Exchange root 45 with the last element 35 of the array and re-heapify

40

 35

35

 40 45

50 70 80 90

6. Exchange root 40 with the last element 35 of the array and re-heapify

The sorted tree

7.7.1. Program for Heap Sort:

void adjust(int i, int n, int a[])
{

int j, item;
j = 2 * i;
item = a[i];
while(j <= n)
{

if((j < n) && (a[j] < a[j+1]))
j++;

if(item >= a[j])
break;

else
{

}

}

a[j/2] = a[j];
j = 2*j;

a[j/2] = item;
}

void heapify(int n, int a[])
{

int i;
for(i = n/2; i > 0; i--)

adjust(i, n, a);

}

void heapsort(int n,int a[])
{

int temp, i;
heapify(n, a);
for(i = n; i > 0; i--)
{

temp = a[i];
a[i] = a[1];
a[1] = temp;

adjust(1, i - 1, a);
}

}

void main()
{

int i, n, a[20];
clrscr();
printf("\n How many element you want: ");
scanf("%d", &n);
printf("Enter %d elements: ", n);
for (i=1; i<=n; i++)

scanf("%d", &a[i]);
heapsort(n, a);
printf("\n The sorted elements are: \n");
for (i=1; i<=n; i++)

printf("%5d", a[i]);
getch();

}

7.8. Priority queue implementation using heap tree:

Priority queue can be implemented using circular array, linked list etc. Another simplified
implementation is possible using heap tree; the heap, however, can be represented using

an array. This implementation is therefore free from the complexities of circular array
and linked list but getting the advantages of simplicities of array.

As heap trees allow the duplicity of data in it. Elements associated with their priority
values are to be stored in from of heap tree, which can be formed based on their priority
values. The top priority element that has to be processed first is at the root; so it can be
deleted and heap can be rebuilt to get the next element to be processed, and so on. As
an illustration, consider the following processes with their priorities:

Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Priority 5 4 3 4 5 5 3 2 1 5

These processes enter the system in the order as listed above at time 0, say. Assume
that a process having higher priority value will be serviced first. The heap tree can be
formed considering the process priority values. The order of servicing the process is
successive deletion of roots from the heap.

Exercises

1. Write a recursive “C” function to implement binary search and compute its
time complexity.

2. Find the expected number of passes, comparisons and exchanges for bubble

sort when the number of elements is equal to “10”. Compare these results
with the actual number of operations when the given sequence is as follows:

7, 1, 3, 4, 10, 9, 8, 6, 5, 2.

3. An array contains “n” elements of numbers. The several elements of this
array may contain the same number “x”. Write an algorithm to find the total
number of elements which are equal to “x” and also indicate the position of
the first such element in the array.

4. When a “C” function to sort a matrix row-wise and column-wise. Assume that
the matrix is represented by a two dimensional array.

5. A very large array of elements is to be sorted. The program is to be run on a

personal computer with limited memory. Which sort would be a better choice:
Heap sort or Quick sort? Why?

6. Here is an array of ten integers: 5 3 8 9 1 7 0 2 6 4
Suppose we partition this array using quicksort's partition function and
using 5 for the pivot. Draw the resulting array after the partition finishes.

7. Here is an array which has just been partitioned by the first step of quicksort:
3, 0, 2, 4, 5, 8, 7, 6, 9. Which of these elements could be the pivot? (There
may be more than one possibility!)

8. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13,
and 2, one at a time, into an initially empty binary heap.

9. Sort the sequence 3, 1, 4, 5, 9, 2, 6, 5 using insertion sort.

10. Show how heap sort processes the input 142, 543, 123, 65, 453, 879, 572,
434, 111, 242, 811, 102.

11. Sort 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 using quick sort with median-of-three

partitioning and a cutoff of 3.

Multiple Choice Questions

1. What is the worst-case time for serial search finding a single item in an

array?

[D]

A. Constant time
B. Quadratic time

C. Logarithmic time
D. Linear time

2. What is the worst-case time for binary search finding a single item in an
array?

[B]

A. Constant time
B. Quadratic time

C. Logarithmic time
D. Linear time

3. What additional requirement is placed on an array, so that binary search

may be used to locate an entry?
A. The array elements must form a heap.
B. The array must have at least 2 entries
C. The array must be sorted.

D. The array's size must be a power of two.

[C]

4. Which searching can be performed recursively ? [B]

A. linear search
B. both

C. Binary search
D. none

5. Which searching can be performed iteratively ? [B]
A. linear search

B. both

C. Binary search

D. none

6. In a selection sort of n elements, how many times is the swap function
called in the complete execution of the algorithm?

[B]

A. 1

B. n2

C. n - 1

D. n log n

7. Selection sort and quick sort both fall into the same category of sorting
algorithms. What is this category?

[B]

A. O(n log n) sorts

B. Interchange sorts

C. Divide-and-conquer sorts

D. Average time is quadratic

8. Suppose that a selection sort of 100 items has completed 42 iterations of
th
e

main loop. How many items are now guaranteed to be in their final spot
(never to be moved again)?

[C]

A. 21

B. 41

C. 42

D. 43

9. When is insertion sort a good choice for sorting an array? [B]
A. Each component of the array requires a large amount of memory
B. The array has only a few items out of place
C. Each component of the array requires a small amount of memory
D. The processor speed is fast

10. What is the worst-case time for quick sort to sort an array of n elements? [D]
A. O(log n)
B. O(n)

C. O(n log n)
D. O(n²)

11. Suppose we are sorting an array of eight integers using quick sort, and we
have just finished the first partitioning with the array looking like this:
2 5 1 7 9 12 11 10 Which statement is correct?
A. The pivot could be either the 7 or the 9.
B. The pivot is not the 7, but it could be the 9.

C. The pivot could be the 7, but it is not the 9.

D. Neither the 7 nor the 9 is the pivot

[A]

12. What is the worst-case time for heap sort to sort an array of n elements? [C]

A. O(log n)
B. O(n)

C. O(n log n)
D. O(n²)

13. Suppose we are sorting an array of eight integers using heap sort, and we
have just finished one of the reheapifications downward. The array now
looks like this: 6 4 5 1 2 7 8
How many reheapifications downward have been performed so far?

[B]

A. 1

B. 3 or 4

C. 2

D. 5 or 6

14. Time complexity of inserting an element to a heap of n elements is of the
order of

[A]

A. log2 n

B. n2

C. n log2n

D. n

15. A min heap is the tree structure where smallest element is available at the [B]

A. leaf
B. root

C. intermediate parent
D. any where

16. In the quick sort method , a desirable choice for the portioning element will
be

[C]

A. first element of list
B. last element of list

C. median of list
D. any element of list

17. Quick sort is also known as [D]

A. merge sort
B. bubble sort

C. heap sort
D. none

18. Which design algorithm technique is used for quick sort . [A]

A. Divide and conqueror
B. greedy

C. backtrack
D. dynamic programming

19. Which among the following is fastest sorting technique (for unordered data) [C]
A. Heap sort
B. Selection Sort

C. Quick Sort
D. Bubble sort

20. In which searching technique elements are eliminated by half in each pass . [C]
A. Linear search
B. both

C. Binary search
D. none

21. Running time of Heap sort algorithm is -----. [B]
A. O(log2 n)
B. A. O(n log2 n)

C. O(n)
D. O(n2)

22. Running time of Bubble sort algorithm is -----. [D]
A. O(log2 n)
B. A. O(n log2 n)

C. O(n)
D. O(n2)

23. Running time of Selection sort algorithm is -----. [D]
A. O(log2 n)
B. A. O(n log2 n)

C. O(n)
D. O(n2)

24. The Max heap constructed from the list of numbers 30,10,80,60,15,55 is [C]

A. 60,80,55,30,10,15
B. 80,60,55,30,10,15

C. 80,55,60,15,10,30
D. none

25. The number of swappings needed to sort the numbers 8,22,7,9,31,19,5,13
in ascending order using bubble sort is

[D]

A. 11
B. 12

C. 13
D. 14

B. A. O(n log2 n) D. O(n2)

26. Time complexity of insertion sort algorithm in best case is
A. O(log2 n) C. O(n)

[C]

27. Binary search algorithm performs efficiently on a
A. linked list C. array

B. both D. none

[C]

28. Which is a stable sort ?
A. Bubble sort C. Quick sort

B. Selection Sort D. none

[D]

29. Heap is a good data structure to implement
A. priority Queue C. linear queue
B. Deque D. none

[A]

30. Always Heap is a
A. complete Binary tree C. Full Binary tree
B. Binary Search Tree D. none

[A]

Chapter-5:Polymorphism

Polymorphism in Java with example

Polymorphism is one of the OOPs feature that allows us to perform a single
action in different ways. For example, lets say we have a class Animal that has
a method sound(). Since this is a generic class so we can’t give it a
implementation like: Roar, Meow, Oink etc. We had to give a generic
message.

public class Animal{
 ...
 public void sound(){
 System.out.println("Animal is making a sound");
 }
}

Now lets say we two subclasses of Animal class: Horse and Cat that extends
(see Inheritance) Animal class. We can provide the implementation to the same

method like this:

public class Horse extends Animal{
...
 @Override
 public void sound(){
 System.out.println("Neigh");
 }
}

and

public class Cat extends Animal{
...
 @Override
 public void sound(){
 System.out.println("Meow");
 }
}

As you can see that although we had the common action for all
subclasses sound() but there were different ways to do the same action. This is
a perfect example of polymorphism (feature that allows us to perform a single
action in different ways). It would not make any sense to just call the generic
sound() method as each Animal has a different sound. Thus we can say that
the action this method performs is based on the type of object.

What is polymorphism in programming?

Polymorphism is the capability of a method to do different things based on the
object that it is acting upon. In other words, polymorphism allows you define
one interface and have multiple implementations. As we have seen in the

https://beginnersbook.com/2013/04/oops-concepts/
https://beginnersbook.com/2013/03/inheritance-in-java/

above example that we have defined the method sound() and have the
multiple implementations of it in the different-2 sub classes.
Which sound() method will be called is determined at runtime so the example
we gave above is a runtime polymorphism example.

Types of polymorphism and method overloading & overriding are covered in
the separate tutorials. You can refer them here:
1. Method Overloading in Java – This is an example of compile time (or static
polymorphism)
2. Method Overriding in Java – This is an example of runtime time (or dynamic
polymorphism)
3. Types of Polymorphism – Runtime and compile time – This is our next
tutorial where we have covered the types of polymorphism in detail. I would
recommend you to go though method overloading and overriding before going
though this topic.Lets write down the complete code of it:

Example 1: Polymorphism in Java

Runtime Polymorphism example:

Animal.java

public class Animal{
 public void sound(){
 System.out.println("Animal is making a sound");
 }
}

Horse.java

class Horse extends Animal{
 @Override
 public void sound(){
 System.out.println("Neigh");
 }
 public static void main(String args[]){
 Animal obj = new Horse();
 obj.sound();
 }
}

Output:

Neigh

Cat.java

public class Cat extends Animal{
 @Override
 public void sound(){
 System.out.println("Meow");
 }
 public static void main(String args[]){

https://beginnersbook.com/2013/05/method-overloading/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/

 Animal obj = new Cat();
 obj.sound();
 }
}

Output:

Meow

Example 2: Compile time Polymorphism

Method Overloading on the other hand is a compile time polymorphism
example.

class Overload
{
 void demo (int a)
 {
 System.out.println ("a: " + a);
 }
 void demo (int a, int b)
 {
 System.out.println ("a and b: " + a + "," + b);
 }
 double demo(double a) {
 System.out.println("double a: " + a);
 return a*a;
 }
}
class MethodOverloading
{
 public static void main (String args [])
 {
 Overload Obj = new Overload();
 double result;
 Obj .demo(10);
 Obj .demo(10, 20);
 result = Obj .demo(5.5);
 System.out.println("O/P : " + result);
 }
}

Here the method demo() is overloaded 3 times: first method has 1 int
parameter, second method has 2 int parameters and third one is having
double parameter. Which method is to be called is determined by the
arguments we pass while calling methods. This happens at compile time so
this type of polymorphism is known as compile time polymorphism.

Output:

a: 10
a and b: 10,20
double a: 5.5
O/P : 30.25

Types of polymorphism in java- Runtime
and Compile time polymorphism
BY CHAITANYA SINGH | FILED UNDER: OOPS CONCEPT

In the last tutorial we discussed Polymorphism in Java. In this guide we will
see types of polymorphism. There are two types of polymorphism in java:
1) Static Polymorphism also known as compile time polymorphism

2) Dynamic Polymorphism also known as runtime polymorphism

Compile time Polymorphism (or Static
polymorphism)

Polymorphism that is resolved during compiler time is known as static
polymorphism. Method overloading is an example of compile time
polymorphism.
Method Overloading: This allows us to have more than one method having
the same name, if the parameters of methods are different in number,
sequence and data types of parameters.

Method Overloading in Java with examples

Method Overloading is a feature that allows a class to have more than one
method having the same name, if their argument lists are different. It is similar
to constructor overloading in Java, that allows a class to have more than one

constructor having different argument lists.

let’s get back to the point, when I say argument list it means the parameters
that a method has: For example the argument list of a method add(int a, int b)
having two parameters is different from the argument list of the method add(int
a, int b, int c) having three parameters.

Three ways to overload a method

In order to overload a method, the argument lists of the methods must differ in
either of these:
1. Number of parameters.

For example: This is a valid case of overloading

add(int, int)
add(int, int, int)

https://beginnersbook.com/category/oops-concept/
https://beginnersbook.com/2013/03/polymorphism-in-java/
https://beginnersbook.com/2013/05/constructor-overloading/

2. Data type of parameters.
For example:

add(int, int)
add(int, float)

3. Sequence of Data type of parameters.

For example:

add(int, float)
add(float, int)

Invalid case of method overloading:
When I say argument list, I am not talking about return type of the method, for
example if two methods have same name, same parameters and have
different return type, then this is not a valid method overloading example. This
will throw compilation error.

int add(int, int)
float add(int, int)

Method overloading is an example of Static Polymorphism. We will

discuss polymorphism and types of it in a separate tutorial.

Points to Note:
1. Static Polymorphism is also known as compile time binding or early binding.
2. Static binding happens at compile time. Method overloading is an example
of static binding where binding of method call to its definition happens at
Compile time.

Method Overloading examples

As discussed in the beginning of this guide, method overloading is done by
declaring same method with different parameters. The parameters must be
different in either of these: number, sequence or types of parameters (or

arguments). Lets see examples of each of these cases.

Argument list is also known as parameter list

Example 1: Overloading – Different Number of parameters
in argument list

This example shows how method overloading is done by having different

number of parameters

class DisplayOverloading
{
 public void disp(char c)

https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/
https://beginnersbook.com/2013/03/polymorphism-in-java/
https://beginnersbook.com/2013/04/java-static-dynamic-binding/

 {
 System.out.println(c);
 }
 public void disp(char c, int num)
 {
 System.out.println(c + " "+num);
 }
}
class Sample
{
 public static void main(String args[])
 {
 DisplayOverloading obj = new DisplayOverloading();
 obj.disp('a');
 obj.disp('a',10);
 }
}

Output:

a
a 10

In the above example – method disp() is overloaded based on the number of
parameters – We have two methods with the name disp but the parameters
they have are different. Both are having different number of parameters.

Example 2: Overloading – Difference in data type of
parameters

In this example, method disp() is overloaded based on the data type of
parameters – We have two methods with the name disp(), one with parameter
of char type and another method with the parameter of int type.

class DisplayOverloading2
{
 public void disp(char c)
 {
 System.out.println(c);
 }
 public void disp(int c)
 {
 System.out.println(c);
 }
}

class Sample2
{
 public static void main(String args[])
 {
 DisplayOverloading2 obj = new DisplayOverloading2();
 obj.disp('a');
 obj.disp(5);
 }
}

Output:

a
5

Example3: Overloading – Sequence of data type of
arguments

Here method disp() is overloaded based on sequence of data type of
parameters – Both the methods have different sequence of data type in
argument list. First method is having argument list as (char, int) and second is
having (int, char). Since the sequence is different, the method can be
overloaded without any issues.

class DisplayOverloading3
{
 public void disp(char c, int num)
 {
 System.out.println("I’m the first definition of method disp");
 }
 public void disp(int num, char c)
 {
 System.out.println("I’m the second definition of method disp");
 }
}
class Sample3
{
 public static void main(String args[])
 {
 DisplayOverloading3 obj = new DisplayOverloading3();
 obj.disp('x', 51);
 obj.disp(52, 'y');
 }
}

Output:

I’m the first definition of method disp
I’m the second definition of method disp

Method Overloading and Type Promotion

When a data type of smaller size is promoted to the data type of bigger size
than this is called type promotion, for example: byte data type can be

promoted to short, a short data type can be promoted to int, long, double etc.

What it has to do with method overloading?

Well, it is very important to understand type promotion else you will think that
the program will throw compilation error but in fact that program will run fine
because of type promotion.
Lets take an example to see what I am talking here:

class Demo{
 void disp(int a, double b){
 System.out.println("Method A");

 }
 void disp(int a, double b, double c){
 System.out.println("Method B");
 }
 public static void main(String args[]){
 Demo obj = new Demo();
 /* I am passing float value as a second argument but
 * it got promoted to the type double, because there
 * wasn't any method having arg list as (int, float)
 */
 obj.disp(100, 20.67f);
 }
}

Output:

Method A

As you can see that I have passed the float value while calling the disp()
method but it got promoted to the double type as there wasn’t any method
with argument list as (int, float)

But this type promotion doesn’t always happen, lets see another example:

class Demo{
 void disp(int a, double b){
 System.out.println("Method A");
 }
 void disp(int a, double b, double c){
 System.out.println("Method B");
 }
 void disp(int a, float b){
 System.out.println("Method C");
 }
 public static void main(String args[]){
 Demo obj = new Demo();
 /* This time promotion won't happen as there is
 * a method with arg list as (int, float)
 */
 obj.disp(100, 20.67f);
 }
}

Output:

Method C

As you see that this time type promotion didn’t happen because there was a
method with matching argument type.
Type Promotion table:

The data type on the left side can be promoted to the any of the data type
present in the right side of it.

byte → short → int → long
short → int → long
int → long → float → double
float → double

long → float → double

Lets see few Valid/invalid cases of method
overloading

Case 1:

int mymethod(int a, int b, float c)
int mymethod(int var1, int var2, float var3)

Result: Compile time error. Argument lists are exactly same. Both methods
are having same number, data types and same sequence of data types.

Case 2:

int mymethod(int a, int b)
int mymethod(float var1, float var2)

Result: Perfectly fine. Valid case of overloading. Here data types of arguments
are different.

Case 3:

int mymethod(int a, int b)
int mymethod(int num)

Result: Perfectly fine. Valid case of overloading. Here number of arguments

are different.

Case 4:

float mymethod(int a, float b)
float mymethod(float var1, int var2)

Result: Perfectly fine. Valid case of overloading. Sequence of the data types
of parameters are different, first method is having (int, float) and second is
having (float, int).

Case 5:

int mymethod(int a, int b)
float mymethod(int var1, int var2)

Result: Compile time error. Argument lists are exactly same. Even though
return type of methods are different, it is not a valid case. Since return type of
method doesn’t matter while overloading a method.

Guess the answers before checking it at the end of programs:
Question 1 – return type, method name and argument list same.

class Demo

{
 public int myMethod(int num1, int num2)
 {
 System.out.println("First myMethod of class Demo");
 return num1+num2;
 }
 public int myMethod(int var1, int var2)
 {
 System.out.println("Second myMethod of class Demo");
 return var1-var2;
 }
}
class Sample4
{
 public static void main(String args[])
 {
 Demo obj1= new Demo();
 obj1.myMethod(10,10);
 obj1.myMethod(20,12);
 }
}

Answer:
It will throw a compilation error: More than one method with same name and
argument list cannot be defined in a same class.

Question 2 – return type is different. Method name & argument list same.

class Demo2
{
 public double myMethod(int num1, int num2)
 {
 System.out.println("First myMethod of class Demo");
 return num1+num2;
 }
 public int myMethod(int var1, int var2)
 {
 System.out.println("Second myMethod of class Demo");
 return var1-var2;
 }
}
class Sample5
{
 public static void main(String args[])
 {
 Demo2 obj2= new Demo2();
 obj2.myMethod(10,10);
 obj2.myMethod(20,12);
 }
}

Answer:
It will throw a compilation error: More than one method with same name and
argument list cannot be given in a class even though their return type is
different. Method return type doesn’t matter in case of overloading.

Example of static Polymorphism

Method overloading is one of the way java supports static polymorphism. Here
we have two definitions of the same method add() which add method would
be called is determined by the parameter list at the compile time. That is the

reason this is also known as compile time polymorphism.

class SimpleCalculator
{
 int add(int a, int b)
 {
 return a+b;
 }
 int add(int a, int b, int c)
 {
 return a+b+c;
 }
}
public class Demo
{
 public static void main(String args[])
 {
 SimpleCalculator obj = new SimpleCalculator();
 System.out.println(obj.add(10, 20));
 System.out.println(obj.add(10, 20, 30));
 }
}

Output:

30
60

Runtime Polymorphism (or Dynamic
polymorphism)

It is also known as Dynamic Method Dispatch. Dynamic polymorphism is
a process in which a call to an overridden method is resolved at runtime,
thats why it is called runtime polymorphism.

Method overriding in java with example

Declaring a method in sub class which is already present in parent class is

known as method overriding. Overriding is done so that a child class can give
its own implementation to a method which is already provided by the parent
class. In this case the method in parent class is called overridden method and
the method in child class is called overriding method. In this guide, we will see
what is method overriding in Java and why we use it.

Method Overriding Example

Lets take a simple example to understand this. We have two classes: A child
class Boy and a parent class Human. The Boy class extends Human class. Both
the classes have a common method void eat(). Boy class is giving its own
implementation to the eat() method or in other words it is overriding
the eat() method.

The purpose of Method Overriding is clear here. Child class wants to give its
own implementation so that when it calls this method, it prints Boy is eating
instead of Human is eating.

class Human{
 //Overridden method
 public void eat()
 {
 System.out.println("Human is eating");
 }
}
class Boy extends Human{
 //Overriding method
 public void eat(){
 System.out.println("Boy is eating");
 }
 public static void main(String args[]) {
 Boy obj = new Boy();
 //This will call the child class version of eat()
 obj.eat();
 }
}

Output:

Boy is eating

Advantage of method overriding

The main advantage of method overriding is that the class can give its own
specific implementation to a inherited method without even modifying the
parent class code.

This is helpful when a class has several child classes, so if a child class needs
to use the parent class method, it can use it and the other classes that want to
have different implementation can use overriding feature to make changes

without touching the parent class code.

Method Overriding and Dynamic Method Dispatch

Method Overriding is an example of runtime polymorphism. When a parent
class reference points to the child class object then the call to the overridden
method is determined at runtime, because during method call which
method(parent class or child class) is to be executed is determined by the

https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/

type of object. This process in which call to the overridden method is resolved
at runtime is known as dynamic method dispatch. Lets see an example to

understand this:

class ABC{
 //Overridden method
 public void disp()
 {
 System.out.println("disp() method of parent class");
 }
}
class Demo extends ABC{
 //Overriding method
 public void disp(){
 System.out.println("disp() method of Child class");
 }
 public void newMethod(){
 System.out.println("new method of child class");
 }
 public static void main(String args[]) {
 /* When Parent class reference refers to the parent class object
 * then in this case overridden method (the method of parent class)
 * is called.
 */
 ABC obj = new ABC();
 obj.disp();

 /* When parent class reference refers to the child class object
 * then the overriding method (method of child class) is called.
 * This is called dynamic method dispatch and runtime polymorphism
 */
 ABC obj2 = new Demo();
 obj2.disp();
 }
}

Output:

disp() method of parent class
disp() method of Child class

In the above example the call to the disp() method using second object (obj2)
is runtime polymorphism (or dynamic method dispatch).
Note: In dynamic method dispatch the object can call the overriding methods
of child class and all the non-overridden methods of base class but it cannot
call the methods which are newly declared in the child class. In the above
example the object obj2 is calling the disp(). However if you try to call
the newMethod() method (which has been newly declared in Demo class) using

obj2 then you would give compilation error with the following message:

Exception in thread "main" java.lang.Error: Unresolved compilation
problem: The method xyz() is undefined for the type ABC

Rules of method overriding in Java

1. Argument list: The argument list of overriding method (method of child
class) must match the Overridden method(the method of parent class).
The data types of the arguments and their sequence should exactly
match.

2. Access Modifier of the overriding method (method of subclass) cannot be
more restrictive than the overridden method of parent class. For e.g. if
the Access Modifier of parent class method is public then the overriding
method (child class method) cannot have private, protected and default
Access modifier,because all of these three access modifiers are more
restrictive than public.
For e.g. This is not allowed as child class disp method is more
restrictive(protected) than base class(public)

3. class MyBaseClass{
4. public void disp()
5. {
6. System.out.println("Parent class method");
7. }
8. }
9. class MyChildClass extends MyBaseClass{
10. protected void disp(){
11. System.out.println("Child class method");
12. }
13. public static void main(String args[]) {
14. MyChildClass obj = new MyChildClass();
15. obj.disp();
16. }

}

Output:

Exception in thread "main" java.lang.Error: Unresolved compilation
problem: Cannot reduce the visibility of the inherited method from
MyBaseClass

However this is perfectly valid scenario as public is less restrictive than
protected. Same access modifier is also a valid one.

class MyBaseClass{
 protected void disp()
 {
 System.out.println("Parent class method");
 }
}
class MyChildClass extends MyBaseClass{
 public void disp(){
 System.out.println("Child class method");
 }
 public static void main(String args[]) {
 MyChildClass obj = new MyChildClass();
 obj.disp();
 }
}

Output:

Child class method

https://beginnersbook.com/2013/05/java-access-modifiers/

17. private, static and final methods cannot be overridden as they are local
to the class. However static methods can be re-declared in the sub class,
in this case the sub-class method would act differently and will have
nothing to do with the same static method of parent class.

18. Overriding method (method of child class) can throw unchecked
exceptions, regardless of whether the overridden method(method of
parent class) throws any exception or not. However the overriding
method should not throw checked exceptions that are new or broader
than the ones declared by the overridden method. We will discuss this in
detail with example in the upcoming tutorial.

19. Binding of overridden methods happen at runtime which is known
as dynamic binding.

20. If a class is extending an abstract class or implementing
an interface then it has to override all the abstract methods unless the
class itself is a abstract class.

Super keyword in Method Overriding

The super keyword is used for calling the parent class
method/constructor. super.myMethod() calls the myMethod() method of base class
while super() calls the constructor of base class. Let’s see the use of super in
method Overriding.
As we know that we we override a method in child class, then call to the
method using child class object calls the overridden method. By using super

we can call the overridden method as shown in the example below:

class ABC{
 public void myMethod()
 {
 System.out.println("Overridden method");
 }
}
class Demo extends ABC{
 public void myMethod(){
 //This will call the myMethod() of parent class
 super.myMethod();
 System.out.println("Overriding method");
 }
 public static void main(String args[]) {
 Demo obj = new Demo();
 obj.myMethod();
 }
}

Output:

Class ABC: mymethod()
Class Test: mymethod()

As you see using super keyword, we can access the overriden method.

https://beginnersbook.com/2013/04/java-checked-unchecked-exceptions-with-examples/
https://beginnersbook.com/2013/04/java-checked-unchecked-exceptions-with-examples/
https://beginnersbook.com/2013/04/java-checked-unchecked-exceptions-with-examples/
https://beginnersbook.com/2013/04/java-static-dynamic-binding/
https://beginnersbook.com/2013/05/java-abstract-class-method/
https://beginnersbook.com/2013/05/java-interface/
https://beginnersbook.com/2014/07/super-keyword-in-java-with-example/
https://beginnersbook.com/2013/03/constructors-in-java/

.

Example
In this example we have two classes ABC and XYZ. ABC is a parent class
and XYZ is a child class. The child class is overriding the method myMethod()
of parent class. In this example we have child class object assigned to the
parent class reference so in order to determine which method would be called,
the type of the object would be determined at run-time. It is the type of object
that determines which version of the method would be called (not the type of

reference).

To understand the concept of overriding, you should have the basic
knowledge of inheritance in Java.

class ABC{
 public void myMethod(){
 System.out.println("Overridden Method");
 }
}
public class XYZ extends ABC{

 public void myMethod(){
 System.out.println("Overriding Method");
 }
 public static void main(String args[]){
 ABC obj = new XYZ();
 obj.myMethod();
 }
}

Output:

Overriding Method

When an overridden method is called through a reference of parent class,
then type of the object determines which method is to be executed. Thus, this
determination is made at run time.
Since both the classes, child class and parent class have the same
method animalSound. Which version of the method(child class or parent class)
will be called is determined at runtime by JVM.

Few more overriding examples:

ABC obj = new ABC();
obj.myMethod();
// This would call the myMethod() of parent class ABC

XYZ obj = new XYZ();
obj.myMethod();
// This would call the myMethod() of child class XYZ

ABC obj = new XYZ();

https://beginnersbook.com/2013/03/inheritance-in-java/

obj.myMethod();
// This would call the myMethod() of child class XYZ

In the third case the method of child class is to be executed because which
method is to be executed is determined by the type of object and since the
object belongs to the child class, the child class version of myMethod() is
called.

Constructor Overloading in Java with
examples

Like methods, constructors can also be overloaded. In this guide we will see
Constructor overloading with the help of examples. Before we proceed further
let’s understand what is constructor overloading and why we do it.

Constructor overloading is a concept of having more than one constructor with
different parameters list, in such a way so that each constructor performs a
different task. For e.g. Vector class has 4 types of constructors. If you do not
want to specify the initial capacity and capacity increment then you can simply
use default constructor of Vector class like this Vector v = new Vector(); however if
you need to specify the capacity and increment then you call the
parameterized constructor of Vector class with two int arguments like
this: Vector v= new Vector(10, 5);

You must have understood the purpose of constructor overloading. Lets see
how to overload a constructor with the help of following java program.

Constructor Overloading Example

https://beginnersbook.com/2013/03/constructors-in-java/
https://beginnersbook.com/2013/12/vector-in-java/

Here we are creating two objects of class StudentData. One is with default
constructor and another one using parameterized constructor. Both the
constructors have different initialization code, similarly you can create any
number of constructors with different-2 initialization codes for different-2
purposes.
StudentData.java

class StudentData
{
 private int stuID;
 private String stuName;
 private int stuAge;
 StudentData()
 {
 //Default constructor
 stuID = 100;
 stuName = "New Student";
 stuAge = 18;
 }
 StudentData(int num1, String str, int num2)
 {
 //Parameterized constructor
 stuID = num1;
 stuName = str;
 stuAge = num2;
 }
 //Getter and setter methods
 public int getStuID() {
 return stuID;
 }
 public void setStuID(int stuID) {
 this.stuID = stuID;
 }
 public String getStuName() {
 return stuName;
 }
 public void setStuName(String stuName) {
 this.stuName = stuName;
 }
 public int getStuAge() {
 return stuAge;
 }
 public void setStuAge(int stuAge) {
 this.stuAge = stuAge;
 }

 public static void main(String args[])
 {
 //This object creation would call the default constructor
 StudentData myobj = new StudentData();
 System.out.println("Student Name is: "+myobj.getStuName());
 System.out.println("Student Age is: "+myobj.getStuAge());
 System.out.println("Student ID is: "+myobj.getStuID());

 /*This object creation would call the parameterized
 * constructor StudentData(int, String, int)*/
 StudentData myobj2 = new StudentData(555, "Chaitanya", 25);

 System.out.println("Student Name is: "+myobj2.getStuName());
 System.out.println("Student Age is: "+myobj2.getStuAge());
 System.out.println("Student ID is: "+myobj2.getStuID());
 }
}

Output:

Student Name is: New Student
Student Age is: 18
Student ID is: 100
Student Name is: Chaitanya
Student Age is: 25
Student ID is: 555

Let’s understand the role of this () in
constructor overloading

public class OverloadingExample2
{
 private int rollNum;
 OverloadingExample2()
 {
 rollNum =100;
 }
 OverloadingExample2(int rnum)
 {
 this();
 /*this() is used for calling the default
 * constructor from parameterized constructor.
 * It should always be the first statement
 * inside constructor body.
 */
 rollNum = rollNum+ rnum;
 }
 public int getRollNum() {
 return rollNum;
 }
 public void setRollNum(int rollNum) {
 this.rollNum = rollNum;
 }
 public static void main(String args[])
 {
 OverloadingExample2 obj = new OverloadingExample2(12);
 System.out.println(obj.getRollNum());
 }
}

Output:

112

As you can see in the above program that we called the parameterized
constructor during object creation. Since we have this() placed in
parameterized constructor, the default constructor got invoked from it and
initialized the variable rollNum.

Test your skills – Guess the output of the following program

public class OverloadingExample2
{
 private int rollNum;
 OverloadingExample2()
 {
 rollNum =100;
 }
 OverloadingExample2(int rnum)
 {

 rollNum = rollNum+ rnum;
 this();
 }
 public int getRollNum() {
 return rollNum;
 }
 public void setRollNum(int rollNum) {
 this.rollNum = rollNum;
 }
 public static void main(String args[])
 {
 OverloadingExample2 obj = new OverloadingExample2(12);
 System.out.println(obj.getRollNum());
 }
}

Output:

Exception in thread "main" java.lang.Error: Unresolved compilation
problem:Constructor call must be the first statement in a constructor

Program gave a compilation error. Reason: this() should be the first statement

inside a constructor.

Another Constructor overloading Example

Another important point to note while overloading a constructor is: When we

don’t implement any constructor, the java compiler inserts the default
constructor into our code during compilation, however if we implement any
constructor then compiler doesn’t do it. See the example below.

public class Demo
{
 private int rollNum;
 //We are not defining a no-arg constructor here

 Demo(int rnum)
 {
 rollNum = rollNum+ rnum;
 }
 //Getter and Setter methods

 public static void main(String args[])

 {
 //This statement would invoke no-arg constructor
 Demo obj = new Demo();
 }
}

Output:

Exception in thread "main" java.lang.Error: Unresolved compilation
problem:The constructor Demo() is undefined

Difference between method Overloading
and Overriding in java

In this we will discuss the difference between overloading and overriding in
Java.

1. Method overloading in java

2. Method overriding in java

Overloading vs Overriding in Java

1. Overloading happens at compile-time while Overriding happens
at runtime: The binding of overloaded method call to its definition has
happens at compile-time however binding of overridden method call to its
definition happens at runtime.

2. Static methods can be overloaded which means a class can have more
than one static method of same name. Static methods cannot be
overridden, even if you declare a same static method in child class it has
nothing to do with the same method of parent class.

3. The most basic difference is that overloading is being done in the same
class while for overriding base and child classes are required. Overriding
is all about giving a specific implementation to the inherited method of
parent class.

4. Static binding is being used for overloaded methods and dynamic
binding is being used for overridden/overriding methods.

5. Performance: Overloading gives better performance compared to
overriding. The reason is that the binding of overridden methods is being
done at runtime.

6. private and final methods can be overloaded but they cannot be
overridden. It means a class can have more than one private/final
methods of same name but a child class cannot override the private/final
methods of their base class.

https://beginnersbook.com/2013/05/method-overloading/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/
https://beginnersbook.com/2013/04/java-static-dynamic-binding/
https://beginnersbook.com/2013/04/java-static-dynamic-binding/
https://beginnersbook.com/2013/04/java-static-dynamic-binding/

7. Return type of method does not matter in case of method overloading, it
can be same or different. However in case of method overriding the
overriding method can have more specific return type (refer this).

8. Argument list should be different while doing method overloading.
Argument list should be same in method Overriding.

Overloading example

//A class for adding upto 5 numbers
class Sum
{
 int add(int n1, int n2)
 {
 return n1+n2;
 }
 int add(int n1, int n2, int n3)
 {
 return n1+n2+n3;
 }
 int add(int n1, int n2, int n3, int n4)
 {
 return n1+n2+n3+n4;
 }
 int add(int n1, int n2, int n3, int n4, int n5)
 {
 return n1+n2+n3+n4+n5;
 }
 public static void main(String args[])
 {
 Sum obj = new Sum();
 System.out.println("Sum of two numbers: "+obj.add(20, 21));
 System.out.println("Sum of three numbers: "+obj.add(20, 21, 22));
 System.out.println("Sum of four numbers: "+obj.add(20, 21, 22, 23));
 System.out.println("Sum of five numbers: "+obj.add(20, 21, 22, 23, 24));
 }
}

Output:

Sum of two numbers: 41
Sum of three numbers: 63
Sum of four numbers: 86
Sum of five numbers: 110

Here we have 4 versions of same method add. We are overloading the

method add() here.

Overriding example

package beginnersbook.com;
class CarClass
{
 public int speedLimit()
 {
 return 100;
 }

https://stackoverflow.com/questions/14694852/can-overridden-methods-differ-in-return-type

}
class Ford extends CarClass
{
 public int speedLimit()
 {
 return 150;
 }
 public static void main(String args[])
 {
 CarClass obj = new Ford();
 int num= obj.speedLimit();
 System.out.println("Speed Limit is: "+num);
 }
}

Output:

Speed Limit is: 150

Here speedLimit() method of class Ford is overriding the speedLimit() method of

class CarClass.

Typecasting is converting one data type to another.

Up-casting − Converting a subclass type to a superclass type is known as up casting.

Example

class Super {

 void Sample() {

 System.out.println("method of super class");

 }

}

public class Sub extends Super {

 void Sample() {

 System.out.println("method of sub class");

 }

 public static void main(String args[]) {

 Super obj =(Super) new Sub(); obj.Sample();

 }

}

Down-casting − Converting a superclass type to a subclass type is known as downcasting.

Example

class Super {

 void Sample() {

 System.out.println("method of super class");

 }

}

public class Sub extends Super {

 void Sample() {

 System.out.println("method of sub class");

 }

 public static void main(String args[]) {

 Super obj = new Sub();

 Sub sub = (Sub) obj; sub.Sample();

 }

}

What is Upcasting and Downcasting in Java
Perhaps in your daily Java coding, you see (anduse) upcasting and downcasting occasionally.

You may hear the terms ‘casting’, ‘upcasting’, ‘downcasting’ from someone or somewhere,

and you may be confused about them.

As you read on, you will realize that upcasting and downcasting are really simple.

Before we go into the details, suppose that we have the following class hierarchy:
 Mammal > Animal > Dog, Cat

Mammal is the super interface:

1

2

3

4

public interface Mammal {
 public void eat();

 public void move();

https://www.codejava.net/java-core/the-java-language/what-is-upcasting-and-downcasting-in-java

5

6

7

 public void sleep();
}

Animal is the abstract class:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public abstract class Animal implements Mammal {
 public void eat() {
 System.out.println("Eating...");
 }

 public void move() {
 System.out.println("Moving...");
 }

 public void sleep() {
 System.out.println("Sleeping...");
 }

}

Dog and Cat are the two concrete sub classes:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public class Dog extends Animal {
 public void bark() {
 System.out.println("Gow gow!");
 }
 public void eat() {
 System.out.println("Dog is eating...");
 }
}

public class Cat extends Animal {
 public void meow() {
 System.out.println("Meow Meow!");
 }
}

1. What is Upcasting in Java?
Upcasting is casting a subtype to a supertype, upward to the inheritance tree. Let’s see an

example:

1

2

3

Dog dog = new Dog();
Animal anim = (Animal) dog;
anim.eat();

Here, we cast the Dog type to the Animal type. Because Animal is the supertype of Dog, this

casting is called upcasting.

Note that the actual object type does not change because of casting. The Dog object is still

a Dog object. Only the reference type gets changed. Hence the above code produces the

following output:

1 Dog is eating…

Upcasting is always safe, as we treat a type to a more general one. In the above example,

an Animal has all behaviors of a Dog.

This is also another example of upcasting:

1

2

Mammal mam = new Cat();
Animal anim = new Dog();

2. Why is Upcasting in Java?
Generally, upcasting is not necessary. However, we need upcasting when we want to write

general code that deals with only the supertype. Consider the following class:

1

2

3

4

5

6

public class AnimalTrainer {
 public void teach(Animal anim) {
 anim.move();
 anim.eat();
 }
}

Here, the teach() method can accept any object which is subtype of Animal. So objects of

type Dog and Cat will be upcasted to Animal when they are passed into this method:

1

2

3

4

5

6

Dog dog = new Dog();
Cat cat = new Cat();

AnimalTrainer trainer = new AnimalTrainer();
trainer.teach(dog);
trainer.teach(cat);

3. What is Downcasting in Java?
Downcasting is casting to a subtype, downward to the inheritance tree. Let’s see an example:

1

2

Animal anim = new Cat();
Cat cat = (Cat) anim;

Here, we cast the Animal type to the Cat type. As Cat is subclass of Animal, this casting is

called downcasting.

Unlike upcasting, downcasting can fail if the actual object type is not the target object type.

For example:

1

2

Animal anim = new Cat();
Dog dog = (Dog) anim;

This will throw a ClassCastException because the actual object type is Cat. And a Cat is

not a Dog so we cannot cast it to a Dog.

The Java language provides the instanceof keyword to check type of an object before casting.

For example:

1

2

3

4

5

6

7

if (anim instanceof Cat) {
 Cat cat = (Cat) anim;
 cat.meow();
} else if (anim instanceof Dog) {
 Dog dog = (Dog) anim;
 dog.bark();
}

So if you are not sure about the original object type, use the instanceof operator to check

the type before casting. This eliminates the risk of a ClassCastException thrown.

4. Why is Downcasting in Java?

https://www.codejava.net/java-core/the-java-language/instanceof-keyword

Downcasting is used more frequently than upcasting. Use downcasting when we want to

access specific behaviors of a subtype.

Consider the following example:

1

2

3

4

5

6

7

8

9

10

11

12

13

public class AnimalTrainer {
 public void teach(Animal anim) {
 // do animal-things
 anim.move();
 anim.eat();

 // if there's a dog, tell it barks
 if (anim instanceof Dog) {
 Dog dog = (Dog) anim;
 dog.bark();
 }
 }
}

Here, in the teach() method, we check if there is an instance of a Dog object passed in,

downcast it to the Dog type and invoke its specific method, bark().

Okay, so far you have got the nuts and bolts of upcasting and downcasting in Java.

Remember:

 Casting does not change the actual object type. Only the reference type gets changed.

 Upcasting is always safe and never fails.

 Downcasting can risk throwing a ClassCastException, so the instanceof operator is

used to check type before casting.

Chapter 6:Abstract Class and Interface

Abstract Class in Java with example

A class that is declared using “abstract” keyword is known as abstract class.
It can have abstract methods(methods without body) as well as concrete
methods (regular methods with body). A normal class(non-abstract class)
cannot have abstract methods. In this guide we will learn what is a abstract
class, why we use it and what are the rules that we must remember while
working with it in Java.

An abstract class can not be instantiated, which means you are not allowed
to create an object of it. Why? We will discuss that later in this guide.

Why we need an abstract class?

Lets say we have a class Animal that has a method sound() and the
subclasses(see inheritance) of it like Dog, Lion, Horse, Cat etc. Since the animal
sound differs from one animal to another, there is no point to implement this
method in parent class. This is because every child class must override this
method to give its own implementation details, like Lion class will say “Roar” in
this method and Dog class will say “Woof”.

So when we know that all the animal child classes will and should override this
method, then there is no point to implement this method in parent class. Thus,
making this method abstract would be the good choice as by making this
method abstract we force all the sub classes to implement this method(
otherwise you will get compilation error), also we need not to give any
implementation to this method in parent class.

Since the Animal class has an abstract method, you must need to declare this
class abstract.

Now each animal must have a sound, by making this method abstract we
made it compulsory to the child class to give implementation details to this
method. This way we ensures that every animal has a sound.

Abstract class Example

//abstract parent class
abstract class Animal{
 //abstract method
 public abstract void sound();
}

https://beginnersbook.com/2013/03/inheritance-in-java/

//Dog class extends Animal class
public class Dog extends Animal{

 public void sound(){
 System.out.println("Woof");
 }
 public static void main(String args[]){
 Animal obj = new Dog();
 obj.sound();
 }
}

Output:

Woof

Hence for such kind of scenarios we generally declare the class as abstract
and later concrete classes extend these classes and override the methods

accordingly and can have their own methods as well.

Abstract class declaration

An abstract class outlines the methods but not necessarily implements all the

methods.

//Declaration using abstract keyword
abstract class A{
 //This is abstract method
 abstract void myMethod();

 //This is concrete method with body
 void anotherMethod(){
 //Does something
 }
}

Rules

Note 1: As we seen in the above example, there are cases when it is difficult

or often unnecessary to implement all the methods in parent class. In these
cases, we can declare the parent class as abstract, which makes it a special
class which is not complete on its own.

A class derived from the abstract class must implement all those methods that
are declared as abstract in the parent class.

Note 2: Abstract class cannot be instantiated which means you cannot create
the object of it. To use this class, you need to create another class that
extends this this class and provides the implementation of abstract methods,
then you can use the object of that child class to call non-abstract methods of
parent class as well as implemented methods(those that were abstract in
parent but implemented in child class).

Note 3: If a child does not implement all the abstract methods of abstract

parent class, then the child class must need to be declared abstract as well.

Do you know? Since abstract class allows concrete methods as well, it does
not provide 100% abstraction. You can say that it provides partial abstraction.
Abstraction is a process where you show only “relevant” data and “hide”

unnecessary details of an object from the user.

Interfaces on the other hand are used for 100% abstraction (See more
about abstraction here).
You may also want to read this: Difference between abstract class and
Interface in Java

Why can’t we create the object of an abstract class?

Because these classes are incomplete, they have abstract methods that have
no body so if java allows you to create object of this class then if someone
calls the abstract method using that object then What would happen?There
would be no actual implementation of the method to invoke.
Also because an object is concrete. An abstract class is like a template, so
you have to extend it and build on it before you can use it.

Example to demonstrate that object creation of abstract
class is not allowed

As discussed above, we cannot instantiate an abstract class. This program
throws a compilation error.

abstract class AbstractDemo{
 public void myMethod(){
 System.out.println("Hello");
 }
 abstract public void anotherMethod();
}
public class Demo extends AbstractDemo{

 public void anotherMethod() {
 System.out.print("Abstract method");
 }
 public static void main(String args[])
 {
 //error: You can't create object of it
 AbstractDemo obj = new AbstractDemo();
 obj.anotherMethod();
 }
}

Output:

https://beginnersbook.com/2013/05/java-interface/
https://beginnersbook.com/2013/03/oops-in-java-encapsulation-inheritance-polymorphism-abstraction/
https://beginnersbook.com/2013/05/abstract-class-vs-interface-in-java/
https://beginnersbook.com/2013/05/abstract-class-vs-interface-in-java/

Unresolved compilation problem: Cannot instantiate the type AbstractDemo

Note: The class that extends the abstract class, have to implement all the
abstract methods of it, else you have to declare that class abstract as well.

Abstract class vs Concrete class

A class which is not abstract is referred as Concrete class. In the above
example that we have seen in the beginning of this guide, Animal is a abstract

class and Cat, Dog & Lion are concrete classes.

Key Points:

1. An abstract class has no use until unless it is extended by some other
class.

2. If you declare an abstract method in a class then you must declare the
class abstract as well. you can’t have abstract method in a concrete
class. It’s vice versa is not always true: If a class is not having any
abstract method then also it can be marked as abstract.

3. It can have non-abstract method (concrete) as well.

I have covered the rules and examples of abstract methods in a separate
tutorial, You can find the guide here: Abstract method in Java
For now lets just see some basics and example of abstract method.
1) Abstract method has no body.
2) Always end the declaration with a semicolon(;).
3) It must be overridden. An abstract class must be extended and in a same
way abstract method must be overridden.
4) A class has to be declared abstract to have abstract methods.

Note: The class which is extending abstract class must override all the

abstract methods.

Example of Abstract class and method

abstract class MyClass{
 public void disp(){
 System.out.println("Concrete method of parent class");
 }
 abstract public void disp2();
}

class Demo extends MyClass{
 /* Must Override this method while extending
 * MyClas
 */
 public void disp2()
 {

https://beginnersbook.com/2014/01/abstract-method-with-examples-in-java/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

 System.out.println("overriding abstract method");
 }
 public static void main(String args[]){
 Demo obj = new Demo();
 obj.disp2();
 }
}

Output:

overriding abstract method

Abstract method in Java with examples

A method without body (no implementation) is known as abstract method. A
method must always be declared in an abstract class, or in other words you
can say that if a class has an abstract method, it should be declared abstract
as well. In the last tutorial we discussed Abstract class, if you have not yet
checked it out read it here: Abstract class in Java, before reading this guide.
This is how an abstract method looks in java:

public abstract int myMethod(int n1, int n2);

As you see this has no body.

Rules of Abstract Method

1. Abstract methods don’t have body, they just have method signature as
shown above.
2. If a class has an abstract method it should be declared abstract, the vice
versa is not true, which means an abstract class doesn’t need to have an
abstract method compulsory.
3. If a regular class extends an abstract class, then the class must have to
implement all the abstract methods of abstract parent class or it has to be
declared abstract as well.

Example 1: abstract method in an abstract class

//abstract class
abstract class Sum{
 /* These two are abstract methods, the child class
 * must implement these methods
 */
 public abstract int sumOfTwo(int n1, int n2);
 public abstract int sumOfThree(int n1, int n2, int n3);

 //Regular method
 public void disp(){
 System.out.println("Method of class Sum");

https://beginnersbook.com/2013/05/java-abstract-class-method/

 }
}
//Regular class extends abstract class
class Demo extends Sum{

 /* If I don't provide the implementation of these two methods, the
 * program will throw compilation error.
 */
 public int sumOfTwo(int num1, int num2){
 return num1+num2;
 }
 public int sumOfThree(int num1, int num2, int num3){
 return num1+num2+num3;
 }
 public static void main(String args[]){
 Sum obj = new Demo();
 System.out.println(obj.sumOfTwo(3, 7));
 System.out.println(obj.sumOfThree(4, 3, 19));
 obj.disp();
 }
}

Output:

10
26
Method of class Sum

Example 2: abstract method in interface

All the methods of an interface are public abstract by default. You cannot have
concrete (regular methods with body) methods in an interface.

//Interface
interface Multiply{
 //abstract methods
 public abstract int multiplyTwo(int n1, int n2);

 /* We need not to mention public and abstract in interface
 * as all the methods in interface are
 * public and abstract by default so the compiler will
 * treat this as
 * public abstract multiplyThree(int n1, int n2, int n3);
 */
 int multiplyThree(int n1, int n2, int n3);

 /* Regular (or concrete) methods are not allowed in an interface
 * so if I uncomment this method, you will get compilation error
 * public void disp(){
 * System.out.println("I will give error if u uncomment me");
 * }
 */
}

class Demo implements Multiply{
 public int multiplyTwo(int num1, int num2){
 return num1*num2;
 }

https://beginnersbook.com/2013/05/java-interface/

 public int multiplyThree(int num1, int num2, int num3){
 return num1*num2*num3;
 }
 public static void main(String args[]){
 Multiply obj = new Demo();
 System.out.println(obj.multiplyTwo(3, 7));
 System.out.println(obj.multiplyThree(1, 9, 0));
 }
}

Output:

21
0

Interface in java with example programs
BY CHAITANYA SINGH | FILED UNDER: OOPS CONCEPT

In the last tutorial we discussed abstract class which is used for achieving
partial abstraction. Unlike abstract class an interface is used for full
abstraction. Abstraction is a process where you show only “relevant” data and
“hide” unnecessary details of an object from the user(See: Abstraction). In this
guide, we will cover what is an interface in java, why we use it and what are

rules that we must follow while using interfaces in Java Programming.

What is an interface in Java?

Interface looks like a class but it is not a class. An interface can have methods
and variables just like the class but the methods declared in interface are by
default abstract (only method signature, no body, see: Java abstract method).
Also, the variables declared in an interface are public, static & final by default.

We will cover this in detail, later in this guide.

What is the use of interface in Java?

As mentioned above they are used for full abstraction. Since methods in
interfaces do not have body, they have to be implemented by the class before
you can access them. The class that implements interface must implement all
the methods of that interface. Also, java programming language does not
allow you to extend more than one class, However you can implement more
than one interfaces in your class.

Syntax:

Interfaces are declared by specifying a keyword “interface”. E.g.:

interface MyInterface
{
 /* All the methods are public abstract by default

https://beginnersbook.com/category/oops-concept/
https://beginnersbook.com/2013/05/java-abstract-class-method/
https://beginnersbook.com/2013/03/oops-in-java-encapsulation-inheritance-polymorphism-abstraction/
https://beginnersbook.com/java-tutorial-for-beginners-with-examples/
https://beginnersbook.com/2014/01/abstract-method-with-examples-in-java/

 * As you see they have no body
 */
 public void method1();
 public void method2();
}

Example of an Interface in Java

This is how a class implements an interface. It has to provide the body of all
the methods that are declared in interface or in other words you can say that
class has to implement all the methods of interface.

Do you know? class implements interface but an interface extends another

interface.

interface MyInterface
{
 /* compiler will treat them as:
 * public abstract void method1();
 * public abstract void method2();
 */
 public void method1();
 public void method2();
}
class Demo implements MyInterface
{
 /* This class must have to implement both the abstract methods
 * else you will get compilation error
 */
 public void method1()
 {
 System.out.println("implementation of method1");
 }
 public void method2()
 {
 System.out.println("implementation of method2");
 }
 public static void main(String arg[])
 {
 MyInterface obj = new Demo();
 obj.method1();
 }
}

Output:

implementation of method1

You may also like to read: Difference between abstract class and interface

Interface and Inheritance

As discussed above, an interface can not implement another interface. It has
to extend the other interface. See the below example where we have two

https://beginnersbook.com/2013/05/abstract-class-vs-interface-in-java/

interfaces Inf1 and Inf2. Inf2 extends Inf1 so If class implements the Inf2 it has
to provide implementation of all the methods of interfaces Inf2 as well as Inf1.

Learn more about inheritance here: Java Inheritance

interface Inf1{
 public void method1();
}
interface Inf2 extends Inf1 {
 public void method2();
}
public class Demo implements Inf2{
 /* Even though this class is only implementing the
 * interface Inf2, it has to implement all the methods
 * of Inf1 as well because the interface Inf2 extends Inf1
 */
 public void method1(){
 System.out.println("method1");
 }
 public void method2(){
 System.out.println("method2");
 }
 public static void main(String args[]){
 Inf2 obj = new Demo();
 obj.method2();
 }
}

In this program, the class Demo only implements interface Inf2, however it has
to provide the implementation of all the methods of interface Inf1 as well,
because interface Inf2 extends Inf1.

Tag or Marker interface in Java

An empty interface is known as tag or marker interface. For example
Serializable, EventListener, Remote(java.rmi.Remote) are tag interfaces.
These interfaces do not have any field and methods in it. Read more about
it here.

Nested interfaces

An interface which is declared inside another interface or class is
called nested interface. They are also known as inner interface. For example
Entry interface in collections framework is declared inside Map interface, that’s
why we don’ use it directly, rather we use it like this: Map.Entry.

Key points: Here are the key points to remember about interfaces:
1) We can’t instantiate an interface in java. That means we cannot create the
object of an interface

https://beginnersbook.com/2013/03/inheritance-in-java/
https://beginnersbook.com/2016/03/tag-or-marker-interfaces-in-java/
https://beginnersbook.com/2016/03/nested-or-inner-interfaces-in-java/

2) Interface provides full abstraction as none of its methods have body. On the
other hand abstract class provides partial abstraction as it can have abstract

and concrete(methods with body) methods both.

3) implements keyword is used by classes to implement an interface.

4) While providing implementation in class of any method of an interface, it
needs to be mentioned as public.

5) Class that implements any interface must implement all the methods of that

interface, else the class should be declared abstract.

6) Interface cannot be declared as private, protected or transient.

7) All the interface methods are by default abstract and public.

8) Variables declared in interface are public, static and final by default.

interface Try
{
 int a=10;
 public int a=10;
 public static final int a=10;
 final int a=10;
 static int a=0;
}

All of the above statements are identical.

9) Interface variables must be initialized at the time of declaration otherwise
compiler will throw an error.

interface Try
{
 int x;//Compile-time error
}

Above code will throw a compile time error as the value of the variable x is not
initialized at the time of declaration.

10) Inside any implementation class, you cannot change the variables
declared in interface because by default, they are public, static and final. Here
we are implementing the interface “Try” which has a variable x. When we tried
to set the value for variable x we got compilation error as the variable x is
public static final by default and final variables can not be re-initialized.

class Sample implements Try
{

 public static void main(String args[])
 {
 x=20; //compile time error
 }
}

11) An interface can extend any interface but cannot implement it. Class
implements interface and interface extends interface.

12) A class can implement any number of interfaces.

13) If there are two or more same methods in two interfaces and a class

implements both interfaces, implementation of the method once is enough.

interface A
{
 public void aaa();
}
interface B
{
 public void aaa();
}
class Central implements A,B
{
 public void aaa()
 {
 //Any Code here
 }
 public static void main(String args[])
 {
 //Statements
 }
}

14) A class cannot implement two interfaces that have methods with same
name but different return type.

interface A
{
 public void aaa();
}
interface B
{
 public int aaa();
}

class Central implements A,B
{

 public void aaa() // error
 {
 }
 public int aaa() // error
 {
 }
 public static void main(String args[])
 {

 }
}

15) Variable names conflicts can be resolved by interface name.

interface A
{
 int x=10;
}
interface B
{
 int x=100;
}
class Hello implements A,B
{
 public static void Main(String args[])
 {
 /* reference to x is ambiguous both variables are x
 * so we are using interface name to resolve the
 * variable
 */
 System.out.println(x);
 System.out.println(A.x);
 System.out.println(B.x);
 }
}

Advantages of interface in java:

Advantages of using interfaces are as follows:

1. Without bothering about the implementation part, we can achieve the
security of implementation

2. In java, multiple inheritance is not allowed, however you can use

interface to make use of it as you can implement more than one
interface.

Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not

supported in java.

Consider a scenario where A, B, and C are three classes. The C class inherits A and B
classes. If A and B classes have the same method and you call it from child class object,
there will be ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time
error if you inherit 2 classes. So whether you have same method or different, there will
be compile time error.

https://beginnersbook.com/2013/05/java-multiple-inheritance/

1. class A{

2. void msg(){System.out.println("Hello");}

3. }

4. class B{

5. void msg(){System.out.println("Welcome");}

6. }

7. class C extends A,B{//suppose if it were

8.

9. public static void main(String args[]){

10. C obj=new C();

11. obj.msg();//Now which msg() method would be invoked?

12. }

13. }

 Compile Time Error

Does Java support Multiple inheritance?
BY CHAITANYA SINGH | FILED UNDER: OOPS CONCEPT

When one class extends more than one classes then this is called multiple
inheritance. For example: Class C extends class A and B then this type of
inheritance is known as multiple inheritance. Java doesn’t allow multiple
inheritance. In this article, we will discuss why java doesn’t allow multiple
inheritance and how we can use interfaces instead of classes to achieve the
same purpose.

Why Java doesn’t support multiple inheritance?

https://beginnersbook.com/category/oops-concept/
https://beginnersbook.com/2013/05/java-inheritance-types/
https://beginnersbook.com/2013/05/java-inheritance-types/

C++ , Common lisp and few other languages supports multiple inheritance
while java doesn’t support it. Java doesn’t allow multiple inheritance to avoid
the ambiguity caused by it. One of the example of such problem is
the diamond problem that occurs in multiple inheritance.

To understand the basics of inheritance, refer this main guide: Inheritance in

Java

What is diamond problem?

We will discuss this problem with the help of the diagram below: which shows
multiple inheritance as Class D extends both classes B & C. Now lets assume
we have a method in class A and class B & C overrides that method in their own
way. Wait!! here the problem comes – Because D is extending both B & C

so if D wants to use the same method which method would be called (the
overridden method of B or the overridden method of C). Ambiguity. That’s the
main reason why Java doesn’t support multiple inheritance.

Can we implement more than one interfaces in a
class

Yes, we can implement more than one interfaces in our program because that
doesn’t cause any ambiguity(see the explanation below).

interface X
{
 public void myMethod();
}
interface Y
{
 public void myMethod();
}

https://beginnersbook.com/2013/03/inheritance-in-java/
https://beginnersbook.com/2013/03/inheritance-in-java/

class JavaExample implements X, Y
{
 public void myMethod()
 {
 System.out.println("Implementing more than one interfaces");
 }
 public static void main(String args[]){
 JavaExample obj = new JavaExample();
 obj.myMethod();
 }
}

Output:

Implementing more than one interfaces

As you can see that the class implemented two interfaces. A class can
implement any number of interfaces. In this case there is no ambiguity even
though both the interfaces are having same method. Why? Because methods
in an interface are always abstract by default, which doesn’t let them give their
implementation (or method definition) in interface itself.

Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not
supported in java.

Consider a scenario where A, B, and C are three classes. The C class inherits A and B

classes. If A and B classes have the same method and you call it from child class object,
there will be ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time
error if you inherit 2 classes. So whether you have same method or different, there will
be compile time error.

14. class A{

15. void msg(){System.out.println("Hello");}

16. }

17. class B{

18. void msg(){System.out.println("Welcome");}

19. }

20. class C extends A,B{//suppose if it were

21.

22. public static void main(String args[]){

23. C obj=new C();

24. obj.msg();//Now which msg() method would be invoked?

25. }

26. }

https://beginnersbook.com/2013/05/java-abstract-class-method/

 Compile Time Error

Does Java support Multiple inheritance?
BY CHAITANYA SINGH | FILED UNDER: OOPS CONCEPT

When one class extends more than one classes then this is called multiple
inheritance. For example: Class C extends class A and B then this type of

inheritance is known as multiple inheritance. Java doesn’t allow multiple
inheritance. In this article, we will discuss why java doesn’t allow multiple
inheritance and how we can use interfaces instead of classes to achieve the

same purpose.

Why Java doesn’t support multiple inheritance?

C++ , Common lisp and few other languages supports multiple inheritance
while java doesn’t support it. Java doesn’t allow multiple inheritance to avoid
the ambiguity caused by it. One of the example of such problem is
the diamond problem that occurs in multiple inheritance.

To understand the basics of inheritance, refer this main guide: Inheritance in

Java

What is diamond problem?

We will discuss this problem with the help of the diagram below: which shows
multiple inheritance as Class D extends both classes B & C. Now lets assume
we have a method in class A and class B & C overrides that method in their own
way. Wait!! here the problem comes – Because D is extending both B & C

so if D wants to use the same method which method would be called (the

https://beginnersbook.com/category/oops-concept/
https://beginnersbook.com/2013/05/java-inheritance-types/
https://beginnersbook.com/2013/05/java-inheritance-types/
https://beginnersbook.com/2013/03/inheritance-in-java/
https://beginnersbook.com/2013/03/inheritance-in-java/

overridden method of B or the overridden method of C). Ambiguity. That’s the
main reason why Java doesn’t support multiple inheritance.

Can we implement more than one interfaces in a
class

Yes, we can implement more than one interfaces in our program because that
doesn’t cause any ambiguity(see the explanation below).

interface X
{
 public void myMethod();
}
interface Y
{
 public void myMethod();
}
class JavaExample implements X, Y
{
 public void myMethod()
 {
 System.out.println("Implementing more than one interfaces");
 }
 public static void main(String args[]){
 JavaExample obj = new JavaExample();
 obj.myMethod();
 }
}

Output:

Implementing more than one interfaces

As you can see that the class implemented two interfaces. A class can
implement any number of interfaces. In this case there is no ambiguity even
though both the interfaces are having same method. Why? Because methods

in an interface are always abstract by default, which doesn’t let them give their
implementation (or method definition) in interface itself.

Difference Between Abstract Class and
Interface in Java

In this article, we will discuss the difference between Abstract Class and
Interface in Java with examples.

1. Abstract class in java
2. Interface in Java

 Abstract Class Interface

1
 An abstract class can extend only one class or one abstract class at

a time

 An interface can extend any number of interfaces

at a time

2
 An abstract class can extend another concrete (regular) class or

abstract class
 An interface can only extend another interface

3 An abstract class can have both abstract and concrete methods An interface can have only abstract methods

4
 In abstract class keyword “abstract” is mandatory to declare a

method as an abstract

 In an interface keyword “abstract” is optional to

declare a method as an abstract

https://beginnersbook.com/2013/05/java-abstract-class-method/
https://beginnersbook.com/2013/05/java-abstract-class-method/
https://beginnersbook.com/2013/05/java-interface/

5 An abstract class can have protected and public abstract methods
 An interface can have only have public abstract

methods

6
 An abstract class can have static, final or static final variable with

any access specifier

 interface can only have public static final

(constant) variable

Each of the above mentioned points are explained with an example below:

Abstract class vs interface in Java

Difference No.1: Abstract class can extend only one class
or one abstract class at a time

class Example1{
 public void display1(){
 System.out.println("display1 method");
 }
}
abstract class Example2{
 public void display2(){
 System.out.println("display2 method");
 }
}
abstract class Example3 extends Example1{
 abstract void display3();
}
class Example4 extends Example3{
 public void display3(){
 System.out.println("display3 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example4 obj=new Example4();
 obj.display3();
 }
}

Output:

display3 method

Interface can extend any number of interfaces at a time

//first interface
interface Example1{

https://beginnersbook.com/2013/05/java-access-modifiers/

 public void display1();
}
//second interface
interface Example2 {
 public void display2();
}
//This interface is extending both the above interfaces
interface Example3 extends Example1,Example2{
}
class Example4 implements Example3{
 public void display1(){
 System.out.println("display2 method");
 }
 public void display2(){
 System.out.println("display3 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example4 obj=new Example4();
 obj.display1();
 }
}

Output:

display2 method

Difference No.2: Abstract class can be
extended(inherited) by a class or an abstract class

class Example1{
 public void display1(){
 System.out.println("display1 method");
 }
}
abstract class Example2{
 public void display2(){
 System.out.println("display2 method");
 }
}
abstract class Example3 extends Example2{
 abstract void display3();
}
class Example4 extends Example3{
 public void display2(){
 System.out.println("Example4-display2 method");
 }
 public void display3(){
 System.out.println("display3 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example4 obj=new Example4();
 obj.display2();
 }
}

Output:

Example4-display2 method

Interfaces can be extended only by interfaces. Classes has to implement
them instead of extend

interface Example1{
 public void display1();
}
interface Example2 extends Example1{
}
class Example3 implements Example2{
 public void display1(){
 System.out.println("display1 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example3 obj=new Example3();
 obj.display1();
 }
}

Output:

display1 method

Difference No.3: Abstract class can have both abstract
and concrete methods

abstract class Example1 {
 abstract void display1();
 public void display2(){
 System.out.println("display2 method");
 }
}
class Example2 extends Example1{
 public void display1(){
 System.out.println("display1 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example2 obj=new Example2();
 obj.display1();
 }
}

Interface can only have abstract methods, they cannot have concrete
methods

interface Example1{
 public abstract void display1();
}
class Example2 implements Example1{
 public void display1(){
 System.out.println("display1 method");
 }
}

class Demo{
 public static void main(String args[]){
 Example2 obj=new Example2();
 obj.display1();
 }
}

Output:

display1 method

Difference No.4: In abstract class, the keyword ‘abstract’
is mandatory to declare a method as an abstract

abstract class Example1{
 public abstract void display1();
}

class Example2 extends Example1{
 public void display1(){
 System.out.println("display1 method");
 }
 public void display2(){
 System.out.println("display2 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example2 obj=new Example2();
 obj.display1();
 }
}

In interfaces, the keyword ‘abstract’ is optional to declare a method as
an abstract because all the methods are abstract by default

interface Example1{
 public void display1();
}
class Example2 implements Example1{
 public void display1(){
 System.out.println("display1 method");
 }
 public void display2(){
 System.out.println("display2 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example2 obj=new Example2();
 obj.display1();
 }
}

Difference No.5: Abstract class can have protected and
public abstract methods

abstract class Example1{

 protected abstract void display1();
 public abstract void display2();
 public abstract void display3();
}
class Example2 extends Example1{
 public void display1(){
 System.out.println("display1 method");
 }
 public void display2(){
 System.out.println("display2 method");
 }
 public void display3(){
 System.out.println("display3 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example2 obj=new Example2();
 obj.display1();
 }
}

Interface can have only public abstract methods

interface Example1{
 void display1();
}
class Example2 implements Example1{
 public void display1(){
 System.out.println("display1 method");
 }
 public void display2(){
 System.out.println("display2 method");
 }
}
class Demo{
 public static void main(String args[]){
 Example2 obj=new Example2();
 obj.display1();
 }
}

Difference No.6: Abstract class can have static, final or
static final variables with any access specifier

abstract class Example1{
 private int numOne=10;
 protected final int numTwo=20;
 public static final int numThree=500;
 public void display1(){
 System.out.println("Num1="+numOne);
 }
}
class Example2 extends Example1{
 public void display2(){
 System.out.println("Num2="+numTwo);
 System.out.println("Num2="+numThree);
 }
}

class Demo{
 public static void main(String args[]){
 Example2 obj=new Example2();
 obj.display1();
 obj.display2();
 }
}

Interface can have only public static final (constant) variable

interface Example1{
 int numOne=10;
}
class Example2 implements Example1{
 public void display1(){
 System.out.println("Num1="+numOne);
 }
}
class Demo{
 public static void main(String args[]){
 Example2 obj=new Example2();
 obj.display1();
 }
}

Chapter 7:Exception Handling

Exception handling in java with examples

Exception handling is one of the most important feature of java programming
that allows us to handle the runtime errors caused by exceptions. In this
guide, we will learn what is an exception, types of it, exception classes and
how to handle exceptions in java with examples.

What is an exception?

An Exception is an unwanted event that interrupts the normal flow of the
program. When an exception occurs program execution gets terminated. In
such cases we get a system generated error message. The good thing about
exceptions is that they can be handled in Java. By handling the exceptions we
can provide a meaningful message to the user about the issue rather than a
system generated message, which may not be understandable to a user.

Why an exception occurs?

There can be several reasons that can cause a program to throw exception.
For example: Opening a non-existing file in your program, Network connection
problem, bad input data provided by user etc.

Exception Handling

If an exception occurs, which has not been handled by programmer then
program execution gets terminated and a system generated error message is
shown to the user. For example look at the system generated exception
below:
An exception generated by the system is given below

 Exception in thread "main" java.lang.ArithmeticException: / by zero at
ExceptionDemo.main(ExceptionDemo.java:5)
 ExceptionDemo : The class name
 main : The method name
 ExceptionDemo.java : The filename
 java:5 : Line number

This message is not user friendly so a user will not be able to understand what
went wrong. In order to let them know the reason in simple language, we
handle exceptions. We handle such conditions and then prints a user friendly

warning message to user, which lets them correct the error as most of the
time exception occurs due to bad data provided by user.

Advantage of exception handling

Exception handling ensures that the flow of the program doesn’t break when
an exception occurs. For example, if a program has bunch of statements and
an exception occurs mid way after executing certain statements then the
statements after the exception will not execute and the program will terminate
abruptly.
By handling we make sure that all the statements execute and the flow of
program doesn’t break.

Difference between error and exception

Errors indicate that something severe enough has gone wrong, the

application should crash rather than try to handle the error.

Exceptions are events that occurs in the code. A programmer can handle
such conditions and take necessary corrective actions. Few examples:
NullPointerException – When you try to use a reference that points to null.
ArithmeticException – When bad data is provided by user, for example, when
you try to divide a number by zero this exception occurs because dividing a
number by zero is undefined.
ArrayIndexOutOfBoundsException – When you try to access the elements of
an array out of its bounds, for example array size is 5 (which means it has five
elements) and you are trying to access the 10th element.

Types of exceptions

There are two types of exceptions in Java:
1)Checked exceptions
2)Unchecked exceptions

I have covered this in detail in a separate tutorial: Checked and Unchecked

exceptions in Java.

Checked exceptions

All exceptions other than Runtime Exceptions are known as Checked
exceptions as the compiler checks them during compilation to see whether the
programmer has handled them or not. If these exceptions are not
handled/declared in the program, you will get compilation error. For example,
SQLException, IOException, ClassNotFoundException etc.

Unchecked Exceptions

Runtime Exceptions are also known as Unchecked Exceptions. These
exceptions are not checked at compile-time so compiler does not check
whether the programmer has handled them or not but it’s the responsibility of
the programmer to handle these exceptions and provide a safe exit. For
example, ArithmeticException, NullPointerException,
ArrayIndexOutOfBoundsException etc.

Compiler will never force you to catch such exception or force you to declare it
in the method using throws keyword.

Try Catch in Java – Exception handling

In the previous topic we discussed what is exception handling and why we do

it. In this we will see try-catch block which is used for exception handling.

Try block

The try block contains set of statements where an exception can occur. A try
block is always followed by a catch block, which handles the exception that
occurs in associated try block. A try block must be followed by catch blocks or
finally block or both.

Syntax of try block

https://beginnersbook.com/2013/04/java-checked-unchecked-exceptions-with-examples/
https://beginnersbook.com/2013/04/java-checked-unchecked-exceptions-with-examples/

try{
 //statements that may cause an exception
}

While writing a program, if you think that certain statements in a program can

throw a exception, enclosed them in try block and handle that exception

Catch block

A catch block is where you handle the exceptions, this block must follow the
try block. A single try block can have several catch blocks associated with it.
You can catch different exceptions in different catch blocks. When an
exception occurs in try block, the corresponding catch block that handles that
particular exception executes. For example if an arithmetic exception occurs in
try block then the statements enclosed in catch block for arithmetic
exception executes.

Syntax of try catch in java

try
{
 //statements that may cause an exception
}
catch (exception(type) e(object))
{
 //error handling code
}

Example: try catch block

If an exception occurs in try block then the control of execution is passed to
the corresponding catch block. A single try block can have multiple catch
blocks associated with it, you should place the catch blocks in such a way that
the generic exception handler catch block is at the last(see in the example
below).
The generic exception handler can handle all the exceptions but you should
place is at the end, if you place it at the before all the catch blocks then it will
display the generic message. You always want to give the user a meaningful

message for each type of exception rather then a generic message.

class Example1 {
 public static void main(String args[]) {
 int num1, num2;
 try {
 /* We suspect that this block of statement can throw
 * exception so we handled it by placing these statements
 * inside try and handled the exception in catch block
 */
 num1 = 0;
 num2 = 62 / num1;
 System.out.println(num2);
 System.out.println("Hey I'm at the end of try block");

 }
 catch (ArithmeticException e) {
 /* This block will only execute if any Arithmetic exception
 * occurs in try block
 */
 System.out.println("You should not divide a number by zero");
 }
 catch (Exception e) {
 /* This is a generic Exception handler which means it can handle
 * all the exceptions. This will execute if the exception is not
 * handled by previous catch blocks.
 */
 System.out.println("Exception occurred");
 }
 System.out.println("I'm out of try-catch block in Java.");
 }
}

Output:

You should not divide a number by zero
I'm out of try-catch block in Java.

Multiple catch blocks in Java

The example we seen above is having multiple catch blocks, lets see few
rules about multiple catch blocks with the help of examples. To read this in
detail, see catching multiple exceptions in java.
1. As I mentioned above, a single try block can have any number of catch
blocks.
2. A generic catch block can handle all the exceptions. Whether it is
ArrayIndexOutOfBoundsException or ArithmeticException or
NullPointerException or any other type of exception, this handles all of them.
To see the examples of NullPointerException and
ArrayIndexOutOfBoundsException, refer this article: Exception Handling

example programs.

catch(Exception e){
 //This catch block catches all the exceptions
}

If you are wondering why we need other catch handlers when we have a
generic that can handle all. This is because in generic exception handler you
can display a message but you are not sure for which type of exception it may
trigger so it will display the same message for all the exceptions and user may
not be able to understand which exception occurred. Thats the reason you
should place is at the end of all the specific exception catch blocks

3. If no exception occurs in try block then the catch blocks are completely
ignored.
4. Corresponding catch blocks execute for that specific type of exception:
catch(ArithmeticException e) is a catch block that can hanlde
ArithmeticException

https://beginnersbook.com/2013/05/catch-multiple-exceptions/
https://beginnersbook.com/2013/04/exception-handling-examples/
https://beginnersbook.com/2013/04/exception-handling-examples/

catch(NullPointerException e) is a catch block that can handle
NullPointerException
5. You can also throw exception, which is an advanced topic and I have
covered it in separate tutorials: user defined exception, throws keyword, throw
vs throws.

Example of Multiple catch blocks

class Example2{
 public static void main(String args[]){
 try{
 int a[]=new int[7];
 a[4]=30/0;
 System.out.println("First print statement in try block");
 }
 catch(ArithmeticException e){
 System.out.println("Warning: ArithmeticException");
 }
 catch(ArrayIndexOutOfBoundsException e){
 System.out.println("Warning: ArrayIndexOutOfBoundsException");
 }
 catch(Exception e){
 System.out.println("Warning: Some Other exception");
 }
 System.out.println("Out of try-catch block...");
 }
}

Output:

Warning: ArithmeticException
Out of try-catch block...

In the above example there are multiple catch blocks and these catch blocks
executes sequentially when an exception occurs in try block. Which means if
you put the last catch block (catch(Exception e)) at the first place, just after try
block then in case of any exception this block will execute as it can handle
all exceptions. This catch block should be placed at the last to avoid such
situations.

Finally block

I have covered this in a separate topicl here: java finally block. For now you
just need to know that this block executes whether an exception occurs or not.
You should place those statements in finally blocks, that must execute

whether exception occurs or not.

Java Finally block – Exception handling

In the previous tutorials I have covered try-catch block and nested try block. In
this guide, we will see finally block which is used along with try-catch.

https://beginnersbook.com/2013/04/user-defined-exception-in-java/
https://beginnersbook.com/2013/12/throws-keyword-example-in-java/
https://beginnersbook.com/2013/04/difference-between-throw-and-throws-in-java/
https://beginnersbook.com/2013/04/difference-between-throw-and-throws-in-java/
https://beginnersbook.com/2013/04/java-finally-block/
https://beginnersbook.com/2013/04/try-catch-in-java/
https://beginnersbook.com/2013/04/nested-try-catch/

A finally block contains all the crucial statements that must be executed
whether exception occurs or not. The statements present in this block will
always execute regardless of whether exception occurs in try block or not
such as closing a connection, stream etc.

Syntax of Finally block

try {
 //Statements that may cause an exception
}
catch {
 //Handling exception
}
finally {
 //Statements to be executed
}

A Simple Example of finally block

Here you can see that the exception occurred in try block which has been
handled in catch block, after that finally block got executed.

class Example
{
 public static void main(String args[]) {
 try{
 int num=121/0;
 System.out.println(num);
 }
 catch(ArithmeticException e){
 System.out.println("Number should not be divided by zero");
 }
 /* Finally block will always execute
 * even if there is no exception in try block
 */
 finally{
 System.out.println("This is finally block");
 }
 System.out.println("Out of try-catch-finally");
 }
}

Output:

Number should not be divided by zero
This is finally block
Out of try-catch-finally

Few Important points regarding finally block

1. A finally block must be associated with a try block, you cannot use finally
without a try block. You should place those statements in this block that must

be executed always.

2. Finally block is optional, as we have seen in previous tutorials that a try-
catch block is sufficient for exception handling, however if you place a finally

block then it will always run after the execution of try block.

3. In normal case when there is no exception in try block then the finally block
is executed after try block. However if an exception occurs then the catch

block is executed before finally block.

4. An exception in the finally block, behaves exactly like any other exception.

5. The statements present in the finally block execute even if the try block
contains control transfer statements like return, break or continue.
Lets see an example to see how finally works when return statement is

present in try block:

Another example of finally block and return statement

You can see that even though we have return statement in the method, the
finally block still runs.

class JavaFinally
{
 public static void main(String args[])
 {
 System.out.println(JavaFinally.myMethod());
 }
 public static int myMethod()
 {
 try {
 return 112;
 }
 finally {
 System.out.println("This is Finally block");
 System.out.println("Finally block ran even after return statement");
 }
 }
}

Output of above program:

This is Finally block
Finally block ran even after return statement
112

To see more examples of finally and return refer: Java finally block and return
statement

.

Cases when the finally block doesn’t execute

https://beginnersbook.com/2013/04/java-exception-handling/
https://beginnersbook.com/2013/05/java-finally-return/
https://beginnersbook.com/2013/05/java-finally-return/

The circumstances that prevent execution of the code in a finally block are:
– The death of a Thread
– Using of the System. exit() method.
– Due to an exception arising in the finally block.

Finally and Close()

close() statement is used to close all the open streams in a program. Its a
good practice to use close() inside finally block. Since finally block executes
even if exception occurs so you can be sure that all input and output streams

are closed properly regardless of whether the exception occurs or not.

For example:

....
try{
 OutputStream osf = new FileOutputStream("filename");
 OutputStream osb = new BufferedOutputStream(opf);
 ObjectOutput op = new ObjectOutputStream(osb);
 try{
 output.writeObject(writableObject);
 }
 finally{
 op.close();
 }
}
catch(IOException e1){
 System.out.println(e1);
}
...

Finally block without catch

A try-finally block is possible without catch block. Which means a try block can
be used with finally without having a catch block.

...
InputStream input = null;
try {
 input = new FileInputStream("inputfile.txt");
}
finally {
 if (input != null) {
 try {
 in.close();
 }catch (IOException exp) {
 System.out.println(exp);
 }
 }
}
...

Finally block and System.exit()

System.exit() statement behaves differently than return statement. Unlike
return statement whenever System.exit() gets called in try block then Finally

block doesn’t execute. Here is a code snippet that demonstrate the same:

....
try {
 //try block
 System.out.println("Inside try block");
 System.exit(0)
}
catch (Exception exp) {
 System.out.println(exp);
}
finally {
 System.out.println("Java finally block");
}
....

In the above example if the System.exit(0) gets called without any exception

then finally won’t execute. However if any exception occurs while
calling System.exit(0) then finally block will be executed.

try-catch-finally block

 Either a try statement should be associated with a catch block or with
finally.

 Since catch performs exception handling and finally performs the
cleanup, the best approach is to use both of them.

Syntax:

try {
 //statements that may cause an exception
}
catch (…) {
 //error handling code
}
finally {
 //statements to be executed
}

Examples of Try catch finally blocks

Example 1: The following example demonstrate the working of finally block

when no exception occurs in try block

class Example1{
 public static void main(String args[]){
 try{
 System.out.println("First statement of try block");
 int num=45/3;
 System.out.println(num);
 }

 catch(ArrayIndexOutOfBoundsException e){
 System.out.println("ArrayIndexOutOfBoundsException");
 }
 finally{
 System.out.println("finally block");
 }
 System.out.println("Out of try-catch-finally block");
 }
}

Output:

First statement of try block
15
finally block
Out of try-catch-finally block

Example 2: This example shows the working of finally block when an

exception occurs in try block but is not handled in the catch block:

class Example2{
 public static void main(String args[]){
 try{
 System.out.println("First statement of try block");
 int num=45/0;
 System.out.println(num);
 }
 catch(ArrayIndexOutOfBoundsException e){
 System.out.println("ArrayIndexOutOfBoundsException");
 }
 finally{
 System.out.println("finally block");
 }
 System.out.println("Out of try-catch-finally block");
 }
}

Output:

First statement of try block
finally block
Exception in thread "main" java.lang.ArithmeticException: / by zero
at beginnersbook.com.Example2.main(Details.java:6)

As you can see that the system generated exception message is shown but
before that the finally block successfully executed.

Example 3: When exception occurs in try block and handled properly in catch

block

class Example3{
 public static void main(String args[]){
 try{
 System.out.println("First statement of try block");
 int num=45/0;
 System.out.println(num);
 }
 catch(ArithmeticException e){

 System.out.println("ArithmeticException");
 }
 finally{
 System.out.println("finally block");
 }
 System.out.println("Out of try-catch-finally block");
 }
}

Output:

First statement of try block
ArithmeticException
finally block
Out of try-catch-finally block

How to throw exception in java with
example

In Java we have already defined exception classes such as
ArithmeticException, NullPointerException, ArrayIndexOutOfBounds exception
etc. These exceptions are set to trigger on different-2 conditions. For example
when we divide a number by zero, this triggers ArithmeticException, when we
try to access the array element out of its bounds then we get
ArrayIndexOutOfBoundsException.

We can define our own set of conditions or rules and throw an exception
explicitly using throw keyword. For example, we can throw
ArithmeticException when we divide number by 5, or any other numbers, what
we need to do is just set the condition and throw any exception using throw
keyword. Throw keyword can also be used for throwing custom exceptions, I
have covered that in a separate tutorial, see Custom Exceptions in Java.

Syntax of throw keyword:

throw new exception_class("error message");

For example:

throw new ArithmeticException("dividing a number by 5 is not allowed in this
program");

Example of throw keyword

Lets say we have a requirement where we we need to only register the
students when their age is less than 12 and weight is less than 40, if any of
the condition is not met then the user should get an ArithmeticException with
the warning message “Student is not eligible for registration”. We have

https://beginnersbook.com/2013/04/user-defined-exception-in-java/

implemented the logic by placing the code in the method that checks student
eligibility if the entered student age and weight doesn’t met the criteria then we

throw the exception using throw keyword.

/* In this program we are checking the Student age
 * if the student age<12 and weight <40 then our program
 * should return that the student is not eligible for registration.
 */
public class ThrowExample {
 static void checkEligibilty(int stuage, int stuweight){
 if(stuage<12 && stuweight<40) {
 throw new ArithmeticException("Student is not eligible for
registration");
 }
 else {
 System.out.println("Student Entry is Valid!!");
 }
 }

 public static void main(String args[]){
 System.out.println("Welcome to the Registration process!!");
 checkEligibilty(10, 39);
 System.out.println("Have a nice day..");
 }
}

Output:

Welcome to the Registration process!!Exception in thread "main"
java.lang.ArithmeticException: Student is not eligible for registration
at beginnersbook.com.ThrowExample.checkEligibilty(ThrowExample.java:9)
at beginnersbook.com.ThrowExample.main(ThrowExample.java:18)

In the above example we have throw an unchecked exception, same way we

can throw unchecked and user-defined exception as well.

Throws clause in java – Exception handling

As we know that there are two types of exception checked and unchecked.
Checked exception (compile time) force you to handle them, if you don’t
handle them then the program will not compile.
On the other hand unchecked exception (Runtime) doesn’t get checked during
compilation. Throws keyword is used for handling checked exceptions . By

using throws we can declare multiple exceptions in one go.

What is the need of having throws keyword
when you can handle exception using try-catch?

Well, thats a valid question. We already know we can handle
exceptions using try-catch block.
The throws does the same thing that try-catch does but there are some cases

https://beginnersbook.com/2013/04/java-checked-unchecked-exceptions-with-examples/
https://beginnersbook.com/2013/04/user-defined-exception-in-java/
https://beginnersbook.com/2013/04/java-checked-unchecked-exceptions-with-examples/
https://beginnersbook.com/2013/04/java-exception-handling/
https://beginnersbook.com/2013/04/java-exception-handling/
https://beginnersbook.com/2013/04/try-catch-in-java/

where you would prefer throws over try-catch. For example:
Lets say we have a method myMethod() that has statements that can throw
either ArithmeticException or NullPointerException, in this case you can use
try-catch as shown below:

public void myMethod()
{
 try {
 // Statements that might throw an exception
 }
 catch (ArithmeticException e) {
 // Exception handling statements
 }
 catch (NullPointerException e) {
 // Exception handling statements
 }
}

But suppose you have several such methods that can cause exceptions, in
that case it would be tedious to write these try-catch for each method. The
code will become unnecessary long and will be less-readable.

One way to overcome this problem is by using throws like this: declare the
exceptions in the method signature using throws and handle the exceptions
where you are calling this method by using try-catch.
Another advantage of using this approach is that you will be forced to handle
the exception when you call this method, all the exceptions that are declared
using throws, must be handled where you are calling this method else you will

get compilation error.

public void myMethod() throws ArithmeticException, NullPointerException
{
 // Statements that might throw an exception
}

public static void main(String args[]) {
 try {
 myMethod();
 }
 catch (ArithmeticException e) {
 // Exception handling statements
 }
 catch (NullPointerException e) {
 // Exception handling statements
 }
}

Example of throws Keyword

In this example the method myMethod() is throwing two checked
exceptions so we have declared these exceptions in the method
signature using throws Keyword. If we do not declare these exceptions then

the program will throw a compilation error.

import java.io.*;
class ThrowExample {
 void myMethod(int num)throws IOException, ClassNotFoundException{
 if(num==1)
 throw new IOException("IOException Occurred");
 else
 throw new ClassNotFoundException("ClassNotFoundException");
 }
}

public class Example1{
 public static void main(String args[]){
 try{
 ThrowExample obj=new ThrowExample();
 obj.myMethod(1);
 }catch(Exception ex){
 System.out.println(ex);
 }
 }
}

Output:

java.io.IOException: IOException Occurred

User defined exception in java
BY CHAITANYA SINGH | FILED UNDER: EXCEPTION HANDLING

In java we have already defined, exception classes such as
ArithmeticException, NullPointerException etc. These exceptions are already
set to trigger on pre-defined conditions such as when you divide a number by
zero it triggers ArithmeticException, In the last tutorial we learnt how to throw
these exceptions explicitly based on your conditions using throw keyword.

In java we can create our own exception class and throw that exception using
throw keyword. These exceptions are known as user-
defined or custom exceptions. In this tutorial we will see how to create your

own custom exception and throw it on a particular condition.

To understand this tutorial you should have the basic knowledge of try-catch
block and throw in java.

Example of User defined exception in Java

/* This is my Exception class, I have named it MyException
 * you can give any name, just remember that it should
 * extend Exception class
 */
class MyException extends Exception{
 String str1;
 /* Constructor of custom exception class

https://beginnersbook.com/category/technology/java-guide/exception-handling/
https://beginnersbook.com/2013/04/throw-in-java/
https://beginnersbook.com/2013/04/try-catch-in-java/
https://beginnersbook.com/2013/04/try-catch-in-java/
https://beginnersbook.com/2013/04/throw-in-java/

 * here I am copying the message that we are passing while
 * throwing the exception to a string and then displaying
 * that string along with the message.
 */
 MyException(String str2) {
 str1=str2;
 }
 public String toString(){
 return ("MyException Occurred: "+str1) ;
 }
}

class Example1{
 public static void main(String args[]){
 try{
 System.out.println("Starting of try block");
 // I'm throwing the custom exception using throw
 throw new MyException("This is My error Message");
 }
 catch(MyException exp){
 System.out.println("Catch Block") ;
 System.out.println(exp) ;
 }
 }
}

Output:

Starting of try block
Catch Block
MyException Occurred: This is My error Message

Explanation:
You can see that while throwing custom exception I gave a string
in parenthesis (throw new MyException("This is My error Message");). That’s why we
have a parameterized constructor (with a String parameter) in my custom

exception class.

Notes:

1. User-defined exception must extend Exception class.
2. The exception is thrown using throw keyword.

Another Example of Custom Exception

In this example we are throwing an exception from a method. In this case we
should use throws clause in the method signature otherwise you will get
compilation error saying that “unhandled exception in method”. To understand

how throws clause works, refer this guide: throws keyword in java.

class InvalidProductException extends Exception
{
 public InvalidProductException(String s)
 {
 // Call constructor of parent Exception

https://beginnersbook.com/2014/01/parameterized-constructor-in-java-example/
https://beginnersbook.com/2013/04/java-throws/

 super(s);
 }
}

public class Example1
{
 void productCheck(int weight) throws InvalidProductException{
 if(weight<100){
 throw new InvalidProductException("Product Invalid");
 }
 }

 public static void main(String args[])
 {
 Example1 obj = new Example1();
 try
 {
 obj.productCheck(60);
 }
 catch (InvalidProductException ex)
 {
 System.out.println("Caught the exception");
 System.out.println(ex.getMessage());
 }
 }
}

Output:

Caught the exception
Product Invalid

Difference between throw and throws in
java
BY CHAITANYA SINGH | FILED UNDER: EXCEPTION HANDLING

In this guide, we will discuss the difference between throw and throws
keywords. Before going though the difference, refer my previous tutorials
about throw and throws.

Throw vs Throws in java

1. Throws clause is used to declare an exception, which means it works
similar to the try-catch block. On the other hand throw keyword is used to

throw an exception explicitly.

https://beginnersbook.com/category/technology/java-guide/exception-handling/
https://beginnersbook.com/2013/04/throw-in-java/
https://beginnersbook.com/2013/04/java-throws/

2. If we see syntax wise than throw is followed by an instance of Exception
class and throws is followed by exception class names.

For example:

throw new ArithmeticException("Arithmetic Exception");

and

throws ArithmeticException;

3. Throw keyword is used in the method body to throw an exception, while
throws is used in method signature to declare the exceptions that can occur in
the statements present in the method.

For example:
Throw:

...
void myMethod() {
 try {
 //throwing arithmetic exception using throw
 throw new ArithmeticException("Something went wrong!!");
 }
 catch (Exception exp) {
 System.out.println("Error: "+exp.getMessage());
 }
}
...

Throws:

...
//Declaring arithmetic exception using throws
void sample() throws ArithmeticException{
 //Statements
}
...

4. You can throw one exception at a time but you can handle multiple
exceptions by declaring them using throws keyword.
For example:
Throw:

void myMethod() {
 //Throwing single exception using throw
 throw new ArithmeticException("An integer should not be divided by zero!!");
}
..

Throws:

//Declaring multiple exceptions using throws
void myMethod() throws ArithmeticException, NullPointerException{
 //Statements where exception might occur
}

These were the main differences between throw and throws in Java. Lets

see complete examples of throw and throws keywords.

Throw Example

To understand this example you should know what is throw keyword and how
it works, refer this guide: throw keyword in java.

public class Example1{
 void checkAge(int age){
 if(age<18)
 throw new ArithmeticException("Not Eligible for voting");
 else
 System.out.println("Eligible for voting");
 }
 public static void main(String args[]){
 Example1 obj = new Example1();
 obj.checkAge(13);
 System.out.println("End Of Program");
 }
}

Output:

Exception in thread "main" java.lang.ArithmeticException:
Not Eligible for voting
at Example1.checkAge(Example1.java:4)
at Example1.main(Example1.java:10)

Throws Example

To understand this example you should know what is throws clause and how it
is used in method declaration for exception handling, refer this guide: throws
in java.

public class Example1{
 int division(int a, int b) throws ArithmeticException{
 int t = a/b;
 return t;
 }
 public static void main(String args[]){
 Example1 obj = new Example1();
 try{
 System.out.println(obj.division(15,0));
 }
 catch(ArithmeticException e){
 System.out.println("You shouldn't divide number by zero");
 }
 }
}

Output:

You shouldn't divide number by zero

https://beginnersbook.com/2013/04/throw-in-java/
https://beginnersbook.com/2013/04/java-throws/
https://beginnersbook.com/2013/04/java-throws/

Checked and unchecked exceptions in
java with examples

There are two types of exceptions: checked exception and unchecked
exception. In this guide, we will discuss them. The main difference between
checked and unchecked exception is that the checked exceptions are

checked at compile-time while unchecked exceptions are checked at runtime.

What are checked exceptions?

Checked exceptions are checked at compile-time. It means if a method is
throwing a checked exception then it should handle the exception using try-
catch block or it should declare the exception using throws keyword, otherwise
the program will give a compilation error.

Lets understand this with the help of an example:

Checked Exception Example

In this example we are reading the file myfile.txt and displaying its content on
the screen. In this program there are three places where a checked exception
is thrown as mentioned in the comments below. FileInputStream which is used
for specifying the file path and name, throws FileNotFoundException. The read()
method which reads the file content throws IOException and the close() method

which closes the file input stream also throws IOException.

import java.io.*;
class Example {
 public static void main(String args[])
 {
 FileInputStream fis = null;
 /*This constructor FileInputStream(File filename)
 * throws FileNotFoundException which is a checked
 * exception
 */
 fis = new FileInputStream("B:/myfile.txt");
 int k;

 /* Method read() of FileInputStream class also throws
 * a checked exception: IOException
 */
 while((k = fis.read()) != -1)
 {
 System.out.print((char)k);
 }

 /*The method close() closes the file input stream
 * It throws IOException*/

https://beginnersbook.com/2013/04/try-catch-in-java/
https://beginnersbook.com/2013/04/try-catch-in-java/
https://beginnersbook.com/2013/04/java-throws/

 fis.close();
 }
}

Output:

Exception in thread "main" java.lang.Error: Unresolved compilation problems:
Unhandled exception type FileNotFoundException
Unhandled exception type IOException
Unhandled exception type IOException

Why this compilation error? As I mentioned in the beginning that checked
exceptions gets checked during compile time. Since we didn’t
handled/declared the exceptions, our program gave the compilation error.
How to resolve the error? There are two ways to avoid this error. We will

see both the ways one by one.

Method 1: Declare the exception using throws keyword.
As we know that all three occurrences of checked exceptions are inside
main() method so one way to avoid the compilation error is: Declare the
exception in the method using throws keyword. You may be thinking that our
code is throwing FileNotFoundException and IOException both then why we
are declaring the IOException alone. The reason is that IOException is a
parent class of FileNotFoundException so it by default covers that. If you want
you can declare them like this public static void main(String args[]) throws IOException,

FileNotFoundException.

import java.io.*;
class Example {
 public static void main(String args[]) throws IOException
 {
 FileInputStream fis = null;
 fis = new FileInputStream("B:/myfile.txt");
 int k;

 while((k = fis.read()) != -1)
 {
 System.out.print((char)k);
 }
 fis.close();
 }
}

Output:

File content is displayed on the screen.

Method 2: Handle them using try-catch blocks.
The approach we have used above is not good at all. It is not the
best exception handling practice. You should give meaningful message for
each exception type so that it would be easy for someone to understand the
error. The code should be like this:

import java.io.*;

https://beginnersbook.com/2013/04/java-exception-handling/

class Example {
 public static void main(String args[])
 {
 FileInputStream fis = null;
 try{
 fis = new FileInputStream("B:/myfile.txt");
 }catch(FileNotFoundException fnfe){
 System.out.println("The specified file is not " +
 "present at the given path");
 }
 int k;
 try{
 while((k = fis.read()) != -1)
 {
 System.out.print((char)k);
 }
 fis.close();
 }catch(IOException ioe){
 System.out.println("I/O error occurred: "+ioe);
 }
 }
}

This code will run fine and will display the file content.

Here are the few other Checked Exceptions –

 SQLException
 IOException
 ClassNotFoundException
 InvocationTargetException

What are Unchecked exceptions?

Unchecked exceptions are not checked at compile time. It means if your
program is throwing an unchecked exception and even if you didn’t
handle/declare that exception, the program won’t give a compilation error.
Most of the times these exception occurs due to the bad data provided by user
during the user-program interaction. It is up to the programmer to judge the
conditions in advance, that can cause such exceptions and handle them
appropriately. All Unchecked exceptions are direct sub classes
of RuntimeException class.

Lets understand this with an example:

Unchecked Exception Example

class Example {
 public static void main(String args[])
 {
 int num1=10;
 int num2=0;

 /*Since I'm dividing an integer with 0
 * it should throw ArithmeticException
 */
 int res=num1/num2;
 System.out.println(res);
 }
}

If you compile this code, it would compile successfully however when you will
run it, it would throw ArithmeticException. That clearly shows that unchecked
exceptions are not checked at compile-time, they occurs at runtime. Lets see
another example.

class Example {
 public static void main(String args[])
 {
 int arr[] ={1,2,3,4,5};
 /* My array has only 5 elements but we are trying to
 * display the value of 8th element. It should throw
 * ArrayIndexOutOfBoundsException
 */
 System.out.println(arr[7]);
 }
}

This code would also compile successfully since ArrayIndexOutOfBoundsException is
also an unchecked exception.
Note: It doesn’t mean that compiler is not checking these exceptions so we
shouldn’t handle them. In fact we should handle them more carefully. For e.g.
In the above example there should be a exception message to user that they
are trying to display a value which doesn’t exist in array so that user would be
able to correct the issue.

class Example {
 public static void main(String args[]) {
 try{
 int arr[] ={1,2,3,4,5};
 System.out.println(arr[7]);
 }
 catch(ArrayIndexOutOfBoundsException e){
 System.out.println("The specified index does not exist " +
 "in array. Please correct the error.");
 }
 }
}

Output:

The specified index does not exist in array. Please correct the error.

Importance of Exception Handling

Exception handling is used when the frequency of occurance of an

exception cannot be predicted.

Real world examples:

1. you provide a web form for users to fill in and submit.but incase

there are a lot of conditions to be handled and the conditions

keeps changing periodically,you use exception handling to

simplify the process

2. database connectivity uses exception handling(why???) this is

because the reason for database connectivity failure cannot be

predicted and handled as it can be caused by many variables

such as power failure, unreachable server,failure at client

front/back end and so on.

3. internet communication

4. arithmetic exceptions such as division by zero and so on.

5. operating systems use exception handling to resolve

deadlocks,recover from crash and so forth

Chapter – 4

Architecture of Multiprocessor Systems

o Parallel Processing

Parallel processing can be described as a class of techniques which enables the

system to achieve simultaneous data-processing tasks to increase the

computational speed of a computer system.

A parallel processing system can carry out simultaneous data-processing to achieve
faster execution time. For instance, while an instruction is being processed in the

ALU component of the CPU, the next instruction can be read from memory.

The primary purpose of parallel processing is to enhance the computer processing

capability and increase its throughput, i.e. the amount of processing that can be

accomplished during a given interval of time.

A parallel processing system can be achieved by having a multiplicity of functional

units that perform identical or different operations simultaneously. The data can be

distributed among various multiple functional units.

The following diagram shows one possible way of separating the execution unit into

eight functional units operating in parallel.

The operation performed in each functional unit is indicated in each block if the

diagram:

o The adder and integer multiplier performs the arithmetic operation with

integer numbers.

o The floating-point operations are separated into three circuits operating in

parallel.

o The logic, shift, and increment operations can be performed concurrently on

different data. All units are independent of each other, so one number can be

shifted while another number is being incremented.

Parallel Processing Systems are designed to speed up the execution of programs by
dividing the program into multiple fragments and processing these fragments
simultaneously. Such systems are multiprocessor systems also known as tightly coupled
systems. Parallel systems deal with the simultaneous use of multiple computer resources
that can include a single computer with multiple processors, a number of computers
connected by a network to form a parallel processing cluster or a combination of both.
Parallel systems are more difficult to program than computers with a single processor
because the architecture of parallel computers varies accordingly and the processes of
multiple CPUs must be coordinated and synchronized. Several models for connecting
processors and memory modules exist, and each topology requires a different
programming model. The three models that are most commonly used in building parallel
computers include synchronous processors each with its own memory, asynchronous
processors each with its own memory and asynchronous processors with a common,
shared memory. Flynn has classified the computer systems based on parallelism in the
instructions and in the data streams. These are:

1. Single instruction stream, single data stream (SISD).
2. Single instruction stream, multiple data stream (SIMD).
3. Multiple instruction streams, single data stream (MISD).
4. Multiple instruction stream, multiple data stream (MIMD).

The above classification of parallel computing system is focused in terms of two
independent factors: the number of data streams that can be simultaneously processed,
and the number of instruction streams that can be simultaneously processed. Here
'instruction stream' we mean an algorithm that instructs the computer what to do
whereas 'data stream' (i.e. input to an algorithm) we mean the data that are being
operated upon.
Even though Flynn has classified the computer 'systems into four types based on
parallelism but only two of them are relevant to parallel computers. These are SIMD and
MIMD computers.

Single Instruction, Single Data (SISD):
A serial (non-parallel) computer
Single instruction: only one instruction stream is being acted on by the CPU during any
one clock cycle
Single data: only one data stream is being used as input during any one clock cycle
Deterministic execution
This is the oldest and even today, the most common type of computer
Examples: older generation mainframes, minicomputers and workstations; most modern
day PCs.

Single Instruction, Multiple Data (SIMD):
A type of parallel computer
Single instruction: All processing units execute the same instruction at any given clock
cycle
Multiple data: Each processing unit can operate on a different data element
Best suited for specialized problems characterized by a high degree of regularity, such as
graphics/image processing.
Synchronous (lockstep) and deterministic execution
Two varieties: Processor Arrays and Vector Pipelines
Examples:
Processor Arrays: Connection Machine CM-2, MasPar MP-1 & MP-2, ILLIAC IV
Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC SX-2, Hitachi S820,
ETA10
Most modern computers, particularly those with graphics processor units (GPUs) employ
SIMD instructions and execution units.

Multiple Instruction, Single Data (MISD):
A single data stream is fed into multiple processing units.
Each processing unit operates on the data independently via independent instruction
streams.
Few actual examples of this class of parallel computer have ever existed. One is the
experimental Carnegie-Mellon C.mmp computer (1971).
Some conceivable uses might be: Multiple frequency filters operating on a single signal
stream. Multiple cryptography algorithms attempting to crack a single coded message.

Multiple Instruction, Multiple Data (MIMD):

Currently, the most common type of parallel computer. Most modern computers fall into
this category.
Multiple Instruction: every processor may be executing a different instruction stream
Multiple Data: every processor may be working with a different data stream
Execution can be synchronous or asynchronous, deterministic or non-deterministic
Examples: most current supercomputers, networked parallel computer clusters and
"grids", multi-processor SMP computers, multi-core PCs.

Note: many MIMD architectures also include
SIMD execution sub-component

What is Pipelining?

Pipelining is the process of accumulating instruction from the processor through a pipeline. It

allows storing and executing instructions in an orderly process. It is also known as pipeline

processing.

Pipelining is a technique where multiple instructions are overlapped during execution. Pipeline is

divided into stages and these stages are connected with one another to form a pipe like structure.

Instructions enter from one end and exit from another end.

Pipelining increases the overall instruction throughput.

In pipeline system, each segment consists of an input register followed by a combinational circuit.

The register is used to hold data and combinational circuit performs operations on it. The output of

combinational circuit is applied to the input register of the next segment.

Pipeline system is like the modern day assembly line setup in factories. For example in a car

manufacturing industry, huge assembly lines are setup and at each point, there are robotic arms to

perform a certain task, and then the car moves on ahead to the next arm.

Types of Pipeline

It is divided into 2 categories:

1. Arithmetic Pipeline

2. Instruction Pipeline

Arithmetic Pipeline

Arithmetic pipelines are usually found in most of the computers. They are used for floating point

operations, multiplication of fixed point numbers etc. For example: The input to the Floating Point Adder

pipeline is:

X = A*2^a

Y = B*2^b

Here A and B are mantissas (significant digit of floating point numbers), while a and b are exponents.

The floating point addition and subtraction is done in 4 parts:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract mantissas

4. Produce the result.

Registers are used for storing the intermediate results between the above operation

Computer Organization and Architecture

Instruction Pipeline

In this a stream of instructions can be executed by overlapping fetch, decode and execute phases of an
instruction cycle. This type of technique is used to increase the throughput of the computer system.

An instruction pipeline reads instruction from the memory while previous instructions are being executed

in other segments of the pipeline. Thus we can execute multiple instructions simultaneously. The pipeline

will be more efficient if the instruction cycle is divided into segments of equal duration.

Advantages of Pipelining
1. The cycle time of the processor is reduced.
2. It increases the throughput of the system

3. It makes the system reliable.

Disadvantages of Pipelining
1. The design of pipelined processor is complex and costly to manufacture.
2. The instruction latency is more.

Introduction: Multiprocessor systems

Most computer systems are single processor systems i.e they only have one processor.
However, multiprocessor or parallel systems are increasing in importance nowadays. These
systems have multiple processors working in parallel that share the computer clock, memory,
bus, peripheral devices etc. An image demonstrating the multiprocessor architecture is:

Classification Multiprocessors are classified by the way their memory is organized.

There are two main kinds of multiprocessing systems:-

 Tightly Coupled Systems

 Loosely Coupled Systems

Computer Organization and Architecture

Tightly Coupled Systems A multiprocessor system with common shared memory is classified as a

sharedmemory or tightly coupled multiprocessor. This does not prevent each processor from having its

own local memory. In fact, most commercial tightly coupled multiprocessors provide a cache memory

with each CPU. In addition, there is a global common memory that all CPUs can access. Information can

be therefore be shared among the CPUs by placing it in the common global memory. Symmetric

multiprocessing (SMP) involves a multiprocessor system architecture where two or more identical

processors connect to a single, shared main memory, have full access to all I/O devices, and are controlled

by a single operating system instance that treats all processors equally, reserving none for special purposes.

Loosely Coupled Systems An alternative model of microprocessor is the distributed memory or loosely

coupled system. Each processor element in a loosely coupled system has its own private local memory.

The processors are tied together by a switching scheme designed to route information from one processor

to another through a message-passing scheme. Loosely coupled systems are most efficient when the

interaction between tasks is minimal unlike tightly coupled systems can tolerate a higher degree of

interaction between tasks.

Types of Multiprocessors

There are mainly two types of multiprocessors i.e. symmetric and asymmetric multiprocessors.
Details about them are as follows:

1. Symmetric Multiprocessors

In these types of systems, each processor contains a similar copy of the operating system and
they all communicate with each other. All the processors are in a peer to peer relationship i.e. no
master - slave relationship exists between them.

An example of the symmetric multiprocessing system is the Encore version of Unix for the
Multimax Computer.

2. Asymmetric Multiprocessors

In asymmetric systems, each processor is given a predefined task. There is a master processor
that gives instruction to all the other processors. Asymmetric multiprocessor system contains a
master slave relationship.

Asymmetric multiprocessor was the only type of multiprocessor available before symmetric
multiprocessors were created. Now also, this is the cheaper option.

Tightly Coupled Systems vs Loosely Coupled Systems :

1.Tightly-coupled systems perform better and are physically smaller than loosely coupled

systems, but have historically required greater initial investments and may depreciate

rapidly. On the other hand, nodes in a loosely coupled system are usually inexpensive

commodity computers and can be recycled as independent machines upon retirement from

the cluster.

2.Tightly coupled systems tend to be much more energy efficient than clusters.

Considerable economy can be realized by designing components to work together from the

Computer Organization and Architecture

beginning in tightly coupled systems Loosely coupled systems use components that were

not necessarily intended specifically for use in such systems.

3. Advantages of Multiprocessor Systems

There are multiple advantages to multiprocessor systems. Some of these are:

More reliable Systems

In a multiprocessor system, even if one processor fails, the system will not halt. This ability to
continue working despite hardware failure is known as graceful degradation. For example: If
there are 5 processors in a multiprocessor system and one of them fails, then also 4 processors
are still working. So the system only becomes slower and does not ground to a halt.

Enhanced Throughput

If multiple processors are working in tandem, then the throughput of the system increases i.e.
number of processes getting executed per unit of time increase. If there are N processors then
the throughput increases by an amount just under N.

More Economic Systems

Multiprocessor systems are cheaper than single processor systems in the long run because they
share the data storage, peripheral devices, power supplies etc. If there are multiple processes
that share data, it is better to schedule them on multiprocessor systems with shared data than
have different computer systems with multiple copies of the data.

4. Disadvantages of Multiprocessor Systems

There are some disadvantages as well to multiprocessor systems. Some of these are:

Increased Expense

Even though multiprocessor systems are cheaper in the long run than using multiple computer
systems, still they are quite expensive. It is much cheaper to buy a simple single processor
system than a multiprocessor system.

Complicated Operating System Required

There are multiple processors in a multiprocessor system that share peripherals, memory etc.
So, it is much more complicated to schedule processes and impart resources to processes.than
in single processor systems. Hence, a more complex and complicated operating system is
required in multiprocessor systems.

Large Main Memory Required

All the processors in the multiprocessor system share the memory. So a much larger pool of
memory is required as compared to single processor systems.

Characteristics of multiprocessors

 A multiprocessor system is an interconnection of two or more CPUs with memory
and input-output equipment.

 The term “processor” in multiprocessor can mean either a central processing unit
(CPU) or an input-output processor (IOP).

 Multiprocessors are classified as multiple instruction stream, multiple data stream

Computer Organization and Architecture

(MIMD) systems

 The similarity and distinction between multiprocessor and multicomputer are

o Similarity
 Both support concurrent operations

o Distinction
 The network consists of several autonomous computers that may

or may not communicate with each other.

 A multiprocessor system is controlled by one operating system that
provides interaction between processors and all the components of
the system cooperate in the solution of a problem.

 Multiprocessing improves the reliability of the system.

 The benefit derived from a multiprocessor organization is an improved system
performance.

o Multiple independent jobs can be made to operate in parallel.
o A single job can be partitioned into multiple parallel tasks.

 Multiprocessing can improve performance by decomposing a program into
parallel executable tasks.

o The user can explicitly declare that certain tasks of the program be
executed in parallel.

This must be done prior to loading the program by specifying the
parallel executable segments.

o The other is to provide a compiler with multiprocessor software that can
automatically detect parallelism in a user’s program.

 Multiprocessor are classified by the way their memory is organized.

o A multiprocessor system with common shared memory is classified as a
shared-memory or tightly coupled multiprocessor.

 Tolerate a higher degree of interaction between tasks.
o Each processor element with its own private local memory is classified as

a distributed-memory or loosely coupled system.
 Are most efficient when the interaction between tasks is minimal

Computer Organization and Architecture

Interconnection Structures

 The components that form a multiprocessor system are CPUs, IOPs connected to input-
output devices, and a memory unit.

 The interconnection between the components can have different physical configurations,
depending on the number of transfer paths that are available

o Between the processors and memory in a shared memory system
o Among the processing elements in a loosely coupled system

 There are several physical forms available for establishing an interconnection network.
o Time-shared common bus
o Multiport memory
o Crossbar switch
o Multistage switching network
o Hypercube system

Time Shared Common Bus

 A common-bus multiprocessor system consists of a number of processors connected
through a common path to a memory unit.

 Disadv.:
o Only one processor can communicate with the memory or another processor at

any given time.
o As a consequence, the total overall transfer rate within the system is limited by

the speed of the single path

 A more economical implementation of a dual bus structure is depicted in Fig. below.

 Part of the local memory may be designed as a cache memory attached to the CPU.

Fig: Time shared common bus organization

Computer Organization and Architecture

Fig: System bus structure for multiprocessorsa

Multiport Memory

 A multiport memory system employs separate buses between each memory module and
each CPU.

 The module must have internal control logic to determine which port will have access to
memory at any given time.

 Memory access conflicts are resolved by assigning fixed priorities to each memory port.

 Adv.:

o The high transfer rate can be achieved because of the multiple paths.
 Disadv.:

o It requires expensive memory control logic and a large number of cables and
connections

Fig: Multiport memory organization

Computer Organization and Architecture

Crossbar Switch

 Consists of a number of crosspoints that are placed at intersections between processor
buses and memory module paths.

 The small square in each crosspoint is a switch that determines the path from a processor
to a memory module.

 Adv.:

o Supports simultaneous transfers from all memory modules
 Disadv.:

o The hardware required to implement the switch can become quite large and
complex.

 Below fig. shows the functional design of a crossbar switch connected to one memory
module.

Fig: Crossbar switch

Fig: Block diagram of crossbar switch

Computer Organization and Architecture

Reference: M. Mano | 5]

Multistage Switching Network

 The basic component of a multistage network is a two-input, two-output interchange
switch as shown in Fig. below.

 Using the 2x2 switch as a building block, it is possible to build a multistage network to
control the communication between a number of sources and destinations.

o To see how this is done, consider the binary tree shown in Fig. below.
o Certain request patterns cannot be satisfied simultaneously. i.e., if P1 000~011,

then P2 100~111

 One such topology is the omega switching network shown in Fig. below

.

Fig: 8 x 8 Omega Switching Network

Computer Organization and Architecture

Reference: M. Mano | 6]

 Some request patterns cannot be connected simultaneously. i.e., any two sources cannot
be connected simultaneously to destination 000 and 001

 In a tightly coupled multiprocessor system, the source is a processor and the destination
is a memory module.

 Set up the path transfer the address into memory transfer the data

 In a loosely coupled multiprocessor system, both the source and destination are

processing elements.

Hypercube System

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled system
composed of N=2

n
processors interconnected in an n-dimensional binary cube.

o Each processor forms a node of the cube, in effect it contains not only a CPU but
also local memory and I/O interface.

o Each processor address differs from that of each of its n neighbors by exactly one
bit position.

 Fig. below shows the hypercube structure for n=1, 2, and 3.

 Routing messages through an n-cube structure may take from one to n links from a
source node to a destination node.

o A routing procedure can be developed by computing the exclusive-OR of the
source node address with the destination node address.

o The message is then sent along any one of the axes that the resulting binary value
will have 1 bits corresponding to the axes on which the two nodes differ.

 A representative of the hypercube architecture is the Intel iPSC computer complex.
o It consists of 128(n=7) microcomputers, each node consists of a CPU, a floating-

point processor, local memory, and serial communication interface units.

Fig: Hypercube structures for n=1,2,3

Computer Organization and Architecture

Reference: M. Mano | 7

	Exercises
	Exercise
	Exercises (1)
	Exercises (2)
	Exercises (3)
	Exercises (4)
	Multiple Choice Questions
	LINKED LISTS
	3.1. Linked List Concepts:
	Advantages of linked lists:
	Disadvantages of linked lists:
	3.2. Types of Linked Lists:
	Comparison between array and linked list:
	3.3. Single Linked List:
	Implementation of Single Linked List:
	The basic operations in a single linked list are:
	Creating a node for Single Linked List:
	Creating a Singly Linked List with ‘n’ number of nodes:
	Insertion of a Node:
	Inserting a node at the beginning:
	Inserting a node at the end:
	Inserting a node at intermediate position:
	Deletion of a node:
	Deleting a node at the beginning:
	Deleting a node at the end:
	Deleting a node at Intermediate position:
	Traversal and displaying a list (Left to Right):
	Counting the Number of Nodes:
	3.3.1. Source Code for the Implementation of Single Linked List:
	3.4. Using a header node:
	3.5. Array based linked lists:
	3.6. Double Linked List:
	Creating a node for Double Linked List:
	Creating a Double Linked List with ‘n’ number of nodes:
	Inserting a node at the beginning: (1)
	Inserting a node at the end: (1)
	Inserting a node at an intermediate position:
	Deleting a node at the beginning: (1)
	Deleting a node at the end: (1)
	Deleting a node at Intermediate position: (1)
	Traversal and displaying a list (Left to Right): (1)
	Traversal and displaying a list (Right to Left):
	Counting the Number of Nodes: (1)
	3.5. A Complete Source Code for the Implementation of Double Linked List:
	3.7. Circular Single Linked List:
	Creating a circular single Linked List with ‘n’ number of nodes:
	Inserting a node at the beginning: (2)
	Inserting a node at the end: (2)
	Deleting a node at the beginning: (2)
	Deleting a node at the end: (2)
	Traversing a circular single linked list from left to right:
	3.7.1. Source Code for Circular Single Linked List:
	3.8. Circular Double Linked List:
	Creating a Circular Double Linked List with ‘n’ number of nodes:
	Inserting a node at the beginning: (3)
	Inserting a node at the end: (3)
	Inserting a node at an intermediate position: (1)
	Deleting a node at the beginning: (3)
	Deleting a node at the end: (3)
	Deleting a node at Intermediate position: (2)
	Traversing a circular double linked list from left to right:
	Traversing a circular double linked list from right to left:
	3.8.1. Source Code for Circular Double Linked List:
	3.9. Comparison of Linked List Variations:
	3.10. Polynomials:
	3.10.1. Source code for polynomial creation with help of linked list:
	3.10.2. Addition of Polynomials:
	3.10.3. Source code for polynomial addition with help of linked list:
	Multiple Choice Questions
	4.1. STACK:
	4.1.1. Representation of Stack:
	4.1.2. Source code for stack operations, using array:
	4.1.3. Linked List Implementation of Stack:
	4.1.4. Source code for stack operations, using linked list:
	4.2. Algebraic Expressions:
	4.3. Converting expressions using Stack:
	4.3.1. Conversion from infix to postfix:
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	4.3.2. Program to convert an infix to postfix expression:
	4.3.3. Conversion from infix to prefix:
	Example 1: (1)
	Example 2: (1)
	Example 3: (1)
	4.3.4. Program to convert an infix to prefix expression:
	4.3.5. Conversion from postfix to infix:
	Example:
	4.3.6. Program to convert postfix to infix expression:
	4.3.7. Conversion from postfix to prefix:
	Example: (1)
	4.3.8. Program to convert postfix to prefix expression:
	4.3.9. Conversion from prefix to infix:
	Example: (2)
	4.3.10. Program to convert prefix to infix expression:
	4.3.11. Conversion from prefix to postfix:
	Example: (3)
	4.3.12. Program to convert prefix to postfix expression:
	4.4. Evaluation of postfix expression:
	Example 1: (2)
	Example 2: (2)
	4.4.1. Program to evaluate a postfix expression:
	4.5. Applications of stacks:
	4.6. Queue:
	4.6.1. Representation of Queue:
	4.6.2. Source code for Queue operations using array:
	4.6.3. Linked List Implementation of Queue:
	4.6.4. Source code for queue operations using linked list:
	4.7. Applications of Queue:
	4.8. Circular Queue:
	4.8.1. Representation of Circular Queue:
	4.8.2. Source code for Circular Queue operations, using array:
	4.9. Deque:
	4.10. Priority Queue:
	Exercises
	Multiple Choice Questions (1)
	2.1. Introduction to Recursion:
	2.2. Differences between recursion and iteration:
	2.3. Factorial of a given number:
	2.4. The Towers of Hanoi:
	2.5. Fibonacci Sequence Problem:
	Output:
	2.6. Program using recursion to calculate the NCR of a given number:
	Output: (1)
	2.7. Program to calculate the least common multiple of a given number:
	Output: (2)
	2.8. Program to calculate the greatest common divisor:
	Output: (3)
	Exercises (1)
	Multiple Choice Questions (2)
	5.1. TREES:
	5.2. BINARY TREE:
	Tree Terminology:
	Siblings
	Ancestor and Descendent
	Subtree
	Level
	Height
	Depth
	Assigning level numbers and Numbering of nodes for a binary tree:
	Properties of binary trees:
	Strictly Binary tree:
	Full Binary tree:
	Complete Binary tree:
	Internal and external nodes:
	Data Structures for Binary Trees:
	Array-based Implementation:
	Linked Representation (Pointer based):
	5.3. Binary Tree Traversal Techniques:
	5.3.1. Recursive Traversal Algorithms:
	Preorder Traversal:
	Postorder Traversal:
	Level order Traversal:
	Example 1: (3)
	Example 2: (3)
	Example 3: (2)
	Example 4: (1)
	5.3.2. Building Binary Tree from Traversal Pairs:
	Example 1: (4)
	Solution:
	Example 2: (4)
	Solution: (1)
	Example 3: (3)
	Solution: (2)
	Example 4: (2)
	Solution: (3)
	5.3.3. Binary Tree Creation and Traversal Using Arrays:
	5.3.4. Binary Tree Creation and Traversal Using Pointers:
	5.3.5. Non Recursive Traversal Algorithms:
	Inorder Traversal:
	Preorder Traversal: (1)
	Postorder Traversal: (1)
	Example 1: (5)
	Inorder Traversal: (1)
	Postorder Traversal: (2)
	Preorder Traversal: (2)
	Example 2: (5)
	Inorder Traversal: (2)
	Postorder Traversal: (3)
	Preorder Traversal: (3)
	5.4. Expression Trees:
	Example 1: (6)
	Solution: (4)
	For the above tree:
	Example 2: (6)
	Solution: (5)
	5.4.1. Converting expressions with expression trees:
	5.5. Threaded Binary Tree:
	5.6. Binary Search Tree:
	5.7. General Trees (m-ary tree):
	Differences between trees and binary trees:
	Stage 1:
	Stage 2:
	Example 1: (7)
	Solution: (6)
	Example 2: (7)
	Solution: (7)
	Example 3: (4)
	Solution: (8)
	5.8. Search and Traversal Techniques for m-ary trees:
	5.8.1. Depth first search:
	Disadvantages:
	5.8.2. Breadth first search:
	5.9. Sparse Matrices:
	The program to represent sparse matrix:
	EXCERCISES
	Multiple Choice Questions (3)
	Introduction to Graphs:
	6.1. Representation of Graphs:
	Adjacency matrix:
	Adjacency List:
	Incidence Matrix:
	6.2. Minimum Spanning Tree (MST):
	Example: (4)
	6.3.1. Kruskal’s Algorithm
	Example 1: (8)
	Example 2: (8)
	Solution: (9)
	6.3.2. MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM
	Prim’s Algorithm:
	Algorithm Prim (E, cost, n, t)
	EXAMPLE:
	Solution: (10)
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:
	Step 7:
	Example 1: (9)
	6.4. Traversing a Graph
	6.5.1. Breadth first search and traversal:
	6.5.2. Depth first search and traversal:
	Example 1: (10)
	Breadth-first search and traversal:
	Depth-first search and traversal:
	Example 2: (9)
	Example 3: (5)
	Depth first search and traversal:
	Breadth first search and traversal:
	EXCERCISES (1)
	Multiple Choice Questions (4)
	7.1. Linear Search:
	Algorithm:
	Example 1: (11)
	Example 2: (10)
	7.1.1. A non-recursive program for Linear Search:
	7.1.2. A Recursive program for linear search:
	7.2. BINARY SEARCH
	Algorithm: (1)
	Example 1: (12)
	Example 2: (11)
	Solution: (11)
	Time Complexity:
	7.2.1. A non-recursive program for binary search:
	7.2.2. A recursive program for binary search:
	7.3. Bubble Sort:
	Example: (5)
	7.3.1. Program for Bubble Sort:
	Time Complexity: (1)
	7.4. Selection Sort:
	Time Complexity: (2)
	Example: (6)
	7.4.1. Non-recursive Program for selection sort:
	7.4.2. Recursive Program for selection sort:
	7.5. Quick Sort:
	Algorithm
	Example: (7)
	7.5.1. Recursive program for Quick Sort:
	7.6. Priority Queue, Heap and Heap Sort:
	7.6.1. Max and Min Heap data structures:
	7.6.2. Representation of Heap Tree:
	7.6.3. Operations on heap tree:
	Insertion into a heap tree:
	Example: (8)
	Deletion of a node from heap tree:
	delmax (a, n, x)
	adjust (a, i, n)
	7.6.4. Merging two heap trees:
	7.6.5. Application of heap tree:
	7.7. HEAP SORT:
	Algorithm: (2)
	heapsort(a, n)
	heapify (a, n)
	adjust (a, i, n) (1)
	Time Complexity: (3)
	Example 1: (13)
	Solution: (12)
	7.7.1. Program for Heap Sort:
	7.8. Priority queue implementation using heap tree:
	Multiple Choice Questions (5)

	Chapter-5:Polymorphism
	Polymorphism in Java with example
	What is polymorphism in programming?
	Example 1: Polymorphism in Java
	Example 2: Compile time Polymorphism

	Types of polymorphism in java- Runtime and Compile time polymorphism
	Compile time Polymorphism (or Static polymorphism)

	Method Overloading in Java with examples
	Three ways to overload a method
	Method Overloading examples
	Example 1: Overloading – Different Number of parameters in argument list
	Example 2: Overloading – Difference in data type of parameters
	Example3: Overloading – Sequence of data type of arguments

	Method Overloading and Type Promotion
	Lets see few Valid/invalid cases of method overloading
	Example of static Polymorphism

	Runtime Polymorphism (or Dynamic polymorphism)

	It is also known as Dynamic Method Dispatch. Dynamic polymorphism is a process in which a call to an overridden method is resolved at runtime, thats why it is called runtime polymorphism.
	Method overriding in java with example
	Method Overriding Example
	Advantage of method overriding
	Method Overriding and Dynamic Method Dispatch
	Rules of method overriding in Java
	Super keyword in Method Overriding

	Constructor Overloading in Java with examples
	Constructor Overloading Example
	Let’s understand the role of this () in constructor overloading
	Another Constructor overloading Example

	Difference between method Overloading and Overriding in java
	Overloading vs Overriding in Java
	Overloading example
	Overriding example

	Example
	Example (1)

	What is Upcasting and Downcasting in Java
	1. What is Upcasting in Java?
	2. Why is Upcasting in Java?
	3. What is Downcasting in Java?
	4. Why is Downcasting in Java?

	Chapter 6:Abstract Class and Interface
	Abstract Class in Java with example
	Why we need an abstract class?
	Abstract class Example
	Abstract class declaration
	Rules
	Why can’t we create the object of an abstract class?
	Example to demonstrate that object creation of abstract class is not allowed

	Abstract class vs Concrete class
	Example of Abstract class and method

	Abstract method in Java with examples
	Rules of Abstract Method
	Example 1: abstract method in an abstract class
	Example 2: abstract method in interface

	Interface in java with example programs
	What is an interface in Java?
	What is the use of interface in Java?
	Example of an Interface in Java
	Interface and Inheritance
	Tag or Marker interface in Java
	Nested interfaces

	Advantages of interface in java:
	Why multiple inheritance is not supported in java?

	Does Java support Multiple inheritance?
	Why Java doesn’t support multiple inheritance?
	Can we implement more than one interfaces in a class
	Why multiple inheritance is not supported in java?

	Does Java support Multiple inheritance? (1)
	Why Java doesn’t support multiple inheritance?
	Can we implement more than one interfaces in a class

	Difference Between Abstract Class and Interface in Java
	Abstract class vs interface in Java
	Difference No.1: Abstract class can extend only one class or one abstract class at a time
	Difference No.2: Abstract class can be extended(inherited) by a class or an abstract class
	Difference No.3: Abstract class can have both abstract and concrete methods
	Difference No.4: In abstract class, the keyword ‘abstract’ is mandatory to declare a method as an abstract
	Difference No.5: Abstract class can have protected and public abstract methods
	Difference No.6: Abstract class can have static, final or static final variables with any access specifier

	Chapter 7:Exception Handling
	Exception handling in java with examples
	What is an exception?
	Why an exception occurs?

	Exception Handling
	Advantage of exception handling

	Difference between error and exception
	Types of exceptions
	Checked exceptions
	Unchecked Exceptions

	Try Catch in Java – Exception handling
	Try block
	Syntax of try block

	Catch block
	Syntax of try catch in java

	Example: try catch block
	Multiple catch blocks in Java
	Example of Multiple catch blocks

	Finally block

	Java Finally block – Exception handling
	Syntax of Finally block
	A Simple Example of finally block
	Few Important points regarding finally block
	Another example of finally block and return statement

	Cases when the finally block doesn’t execute
	Finally and Close()
	Finally block without catch
	Finally block and System.exit()
	try-catch-finally block
	Examples of Try catch finally blocks

	How to throw exception in java with example
	Example of throw keyword

	Throws clause in java – Exception handling
	What is the need of having throws keyword when you can handle exception using try-catch?
	Example of throws Keyword

	User defined exception in java
	Example of User defined exception in Java
	Another Example of Custom Exception

	Difference between throw and throws in java
	Throw vs Throws in java
	Throw Example
	Throws Example

	Checked and unchecked exceptions in java with examples
	What are checked exceptions?
	Checked Exception Example

	What are Unchecked exceptions?
	Unchecked Exception Example

	o Parallel Processing
	Classification Multiprocessors are classified by the way their memory is organized.
	There are two main kinds of multiprocessing systems:-
	(Tightly Coupled Systems
	(Loosely Coupled Systems
	Tightly Coupled Systems (A multiprocessor system with common shared memory is classified as a sharedmemory or tightly coupled multiprocessor. This does not prevent each processor from having its own local memory. (In fact, most commercial tightly co...
	Loosely Coupled Systems (An alternative model of microprocessor is the distributed memory or loosely coupled system. Each processor element in a loosely coupled system has its own private local memory. (The processors are tied together by a switchin...
	Types of Multiprocessors
	1. Symmetric Multiprocessors
	2. Asymmetric Multiprocessors
	3. Advantages of Multiprocessor Systems
	4. Disadvantages of Multiprocessor Systems

