

DEPARTMENT OF MECHANICAL ENGINEERING

Lesson Plan

Head of Department : Er. SHALANDER MOR

Name of the faculty : Er. Shalander Mor

Discipline : Mechanical Engineering

Semester : 5^t

Subject : CNC Machines and Automation

Lesson Plan Duration : 16weeks

Work Load : (L/P) (3 Periods/ 2 periods) /Week

Theory			Practical
Week Lecture		Topics	Topics
	Day		
1^{st}	1^{st}	Unit 1 Introduction- Introduction to NC their advantages, disadvantages and applications.	Study of constructional detail of CNC lathe.
	$2^{\rm nd}$	Introduction to CNC their advantages, disadvantages and applications.	
	$3^{\rm rd}$	Introduction to DNC their advantages, disadvantages and applications.	
2^{nd}	4^{th}	Basic components of CNC machines, MCU.	Study of constructional detail
	5^{th}	Input devices, selection of components to be machined on CNC machines.	of CNC lathe.
	6^{th}	Axis identification.	
3^{rd}	7^{th}	Unit 2 Construction and Tooling- Design features, specification of CNC machines	Study the constructional details and working of:
	8^{th}	Use of slideways, balls, rollers and coatings, motor and leadscrew,	Automatic tool changer and tool setter

	9 th	Swarf removal, safety and guarding devices	Multiple pallets Swarf removal Safety devices
4 th	10 th 11 th 12 th	Various cutting tools for CNC machines, Concept of CNC tool holder, Different pallet systems and automatic tool changer system	Develop a part programme for following lathe operations and make the job on CNC lathe and CNC turning center.(for finish pass only) – (At least two)
5^{th}	13 th 14 th 15 th	Management of a tool room Unit 3 System Devices- Control System; Open Loop and Closed Loop System	Calculating coordinate points for a cylindrical job by considering sign convention for lathe Plain turning and facing operations
6^{th}	16 th 17 th 18 th	Concept of Actuators SESSIONAL I Transducers and Sensors	Develop a part programme for the following milling operations and make the joB on CNC milling (for finish Pass only)- At least two

$7^{ ext{th}}$	19 th 20 th 21 st	Tachometer LVDT Opto-interrupters	Calculate coordinate points for a zig zag job by considering sign convention for milling
8^{th}	$\begin{array}{c} 22^{\mathrm{nd}} \\ 23^{\mathrm{rd}} \\ 24^{\mathrm{th}} \end{array}$	Potentiometers for linear and angular position, Encoder Decoder & axis drives	Develop a part program by using canned cycle on CNC lathe for turning, facing
9 th	25 th 26 th 27 th	Unit 4 Part Programming- Introduction to Part programming Basic concepts of part programming NC words, part programming formats	Preparation of work instruction for machine operator
10^{th}	$28^{\text{th}} \\ 29^{\text{th}} \\ 30^{\text{th}}$	Simple programming for rational components Part programming using conned cycles, Subroutines and do loops, tool off sets	Preparation of preventive maintenance schedule for CNC machine
11 th	31 st 32 nd 33 rd	Cutter radius compensation Tool wear compensation SESSIONAL II	Demonstration through industrial visit for awareness of actual working of FMS in production.
12 th	34 th	Unit 5 Problems in CNC Machines- Common problems in CNC machines related to mechanical, electrical components	Use of software for turning operations on CNC turning center
	35 th	Common problems in CNC machines related to pneumatic, electronic components Study of common problems and remedies	
13^{th}	37 th	Use of on-time fault finding diagnosis tools in CNC machines.	Use of software for milling operations on machine
	38 th	Unit 6 Automation and NC system- Concept of automation, emerging trends in automation	centres.
	39 th	Automatic assembly, components of Automation & Types.	
14 th	$40^{\text{th}} \\ 41^{\text{st}} \\ 42^{\text{nd}}$	Overview of FMS, Group technology, CAD/CAM and CIM. Automated Identification system	FILE CHECK
15 th	43 rd 44 th 45 th	concept of AI, Robotics nomenclature of joints, motion SESSIONAL III	VIVA-VOCE

DEPARTMENT OF MECHANICAL ENGINEERING

Lesson Plan

Head of Department : Er. SHALANDER MOR

Name of the faculty: Sh. SANJAY KUMAR/ Sh. AMIT KUMAR

Discipline: MECHANICAL ENGINEERING

Semester: 5TH MECHANICAL

Subject: MACHINE DESIGN

Lesson Plan Duration: 15 weeks (from JULY, 2019 to DEC, 2019)

Week	Theory		Practical	
	Lecture Day	Topic (including assignment / test)	Practical Day	Topic
1 st	1	Design – Definition, Type of design	1	Drawing of rectangular key
	2	Necessity of design	2.	Drawing of parallel key
	3	Comparison of designed and undesigned work		
2 nd	4	Design procedure, fatigue, endurance limit	3.	Drawing of rectangular taper key
	5	Characteristics of a good designer	4.	Drawing of square taper key
	6	Design terminology: stress, strain, factor of safety		

3 rd	7	factors affecting factor of safety	5.	Wood ruff key
	8	stress concentration	6.	Drawings of saddle keys
	9	methods to reduce stress concentration		
4 th	10	General design consideration	7.	Drawing of VEE threads
	11	Codes and Standards (BIS standards)	8.	Drawing of Sqaure thread
	12	Engineering materials and their mechanical properties		
5 th	13	Properties of engineering materials: elasticity, plasticity, malleability, ductility, toughness, hardness and resilience.	9.	Drawings of bolt

	14	Fatigue, creep, tenacity, strength	10.	Drawings of cap screw
	15	Selection of materials, criterion of material selection		
6 th	16	Design Failure :Various design failures-maximum stress theory,	11.	Drawings of stud
	17	maximum strain theory, maximum strain energy theory	12.	Drawings of machine screw
	18	Classification of loads		
7 th	19	Design under tensile, compressive and torsional loads.	13.	Drawings of set screw
	20	Design of Shaft	14.	Drawings of locking devices
	21	Type of shaft, shaft materials, Type of loading on shaft		
8 th	22	standard sizes of shaft available	15.	Drawing of parallel shafts
	23	Shaft subjected to torsion only,	16.	Drawing of taper shafts
	24	determination of shaft diameter (hollow and solid shaft) on the basis of : - Strength criterion		
9 th	25	Rigidity criterion	17.	Profile of cam and roller follower with constant velocity profile
	26	Determination of shaft dia (hollow and solid shaft) subjected to bending	18.	Profile of cam and followers with knife edge follower in UAD motion
	27	Determination of shaft dia (hollow and solid shaft) subjected to combined torsion and bending		
10 th	28	Design of Key	19	Profile of cam and followers with roller follower in UAD motion
	29	Types of key, materials of key	20	Profile of cam and followers with knife edge follower in SHM motion
	30	functions of key		
11 th	31	Failure of key (by Shearing and Crushing)	21	Profile of cam and followers with Roller follower in SHM motion
	32	Design of key (Determination of key dimension).	22	Profile of cam and knife edge follower with constant velocity profile
	33	Effect of keyway on shaft		

		strength		
12 th	34	Design of Screwed Joints	23	Profile of cam and followers with roller follower in constant velocity motion
	35	Introduction, Advantages and Disadvantages of screw joints	24	Profile of cam and followers with knife edge follower in combined constant velocity & UAD motion
	36	location of screw joints.		
13 th	37	Important terms used in screw threads	25	Profile of cam and followers with knife edge follower in combined constant velocity & SHM motion
	38	designation of screw threads	26	Profile of cam and followers with knife edge follower in combined SHM & UAD motion
	39	Initial stresses due to screw up forces, stresses due to combined forces		
14 th	40	Design of power screws (Press, screw jack, screw clamp)	27	Profile of cam and followers with roller follower in constant velocity motion and offset axis
	41	Types of cams and followers	28.	Profile of cam and followers with roller follower in SHM motion
	42	Profile of cams for imparting following motion with knife edge and roller Uniform motion followers, SHM and UAD motion		
15 th	43	Nomenclature of gears and conventional representation	29	Drawing the actual profile of involute teeth gear by absolute methods
	44	revision	30.	Drawing the actual profile of involute teeth gear by tracing absolute methods
	45	class test		

DEPARTMENT OF MECHANICAL ENGINEERING

Lesson Plan

Head of Department Er. SHALANDER MOR

Name of the faculty Sh. AMIT KUMAR

Discipline : Mechanical Engineering

Semester : 5th

Subject : Refrigeration and Air Conditioning

Lesson Plan Duratio: 16 weeks

Work Load : (L/P) (3 Periods/ 2 periods) /Week

		Theory	Practical
Wee k	Lectur e Day	Topics	Topics
1 st	1 st	Unit 1 Fundamentals of Refrigeration Introduction to refrigeration, and air conditioning	1 st Identify various tools of refrigeration kit and practice in cutting, bending, flaring, swaging and brazing of tubes
	2 nd	Meaning of refrigerating effect, units of refrigeration, COP	(Cont.).
	3^{rd}	Methods of refrigeration (Cont.)	
	4 th	Methods of refrigeration (Cont.)	
2^{nd}	5 th	Methods of refrigeration	1st Identify various tools of
	6 th	Introduction to air refrigerator working on reversed carnot cycle	refrigeration kit and practice in cutting, bending, flaring, swaging and brazing of tubes.
	7 th	Unit 2 Vapour Compression System Introduction	and ordering of thoes.

	8 th	Principle, function, parts and necessity of vapour	
3 rd	9 th	compression system T- φ and p– H charts	
	10 th	Dry, wet and superheated compression	2 nd Study of thermostatic switch, LP/HP cut out overload protector filters, strainers and filter driers (Cont.).
	11 th	Effect of sub cooling, super heating,	
	12 th	Mass flow rate, entropy, enthalpy, work done	
4 th	13 th	Refrigerating effect and COP	2nd Study of thermostatic switch I D/LID
	14 th	Actual vapour compression system	2 nd Study of thermostatic switch, LP/HP cut out overload protector filters, strainers and filter driers.
	15 th	Unit 3 Refrigerants Functions	
	16 th	Classification of refrigerants	
5 th	17 th	Properties of R - 717, R – 22	3 rd Identify various parts of a refrigerator and window air conditioner
	18 th	R-134 (a) and CO ₂ .	(Cont.).

	19 th	Properties of ideal refrigerant	
6 th	20 th 21st	SESSIONAL I selection of refrigerant	3 rd Identify various parts of a refrigerator and window air
	22 nd	Unit 4 Vapour Absorption System Introduction	conditioner.
	23 rd	Principle and working of simple absorption system	
	24 th	Domestic Electrolux refrigeration systems	
7 th	25 th	Solar power refrigeration system	4th To find COP of Refrigeration
	26 th	advantages and disadvantages of solar power refrigeration system over vapour compression system	system.
	27 th	Unit 5 Refrigeration Equipment 5.1 Compressor - Function	
	28 th	Various types of compressors (Cont.)	
8 th	29 th	Various types of compressors	5 th To detect trouble/faults in a refrigerator/window type air
	30^{th}	5.2 Condenser - Function	conditioner (Cont.).
	31 st	Various types of condensers (Cont.)	
	32^{nd}	Various types of condensers	
9 th	33 rd	5.3 Evaporator - Function	5 th To detect trouble/faults in a refrigerator/window type air
	34^{th}	Various types of evaporators (Cont.)	conditioner.
	35^{th}	Various types of evaporators	
	36 th	5.4 Expansion Valve - Function	
10 th	37 th	Various types such as capillary tube, thermostatic expansion valve	6 th Charging of a refrigerator/window type air conditioner (Cont.).
	38 th 39 th	Low side and high side float valves SESSIONAL II	
	40 th	Application of various expansion valves	
11 th	41 st	5.5. Safety Devices -Thermostat, overload protector	6 th Charging of a refrigerator/window type air conditioner.
	42 nd	LP, HP cut out switch	
	43 rd	Unit 6 Psychrometry Definition, importance	
	44 th	Specific humidity, relative humidity, degree of saturation	
12 th	45 th	DBT, WBT, DPT	7 th Study of cut section of single
	46 th	Sensible heat, latent heat	cylinder compressor

- 47th Total enthalpy of air. Psychrometry chart
- 48th Various processes of psychrometry (Cont.)

13 th	49 th	Various processes of psychrometry	8 th Visit to an ice plant, cold storage
	50 th	Unit 7 Air-Conditioner Study of window air-conditioning (Cont.)	plant, central air conditioning plant(Cont.).
	51st	Study of window air-conditioning	
	52 nd	Split type air conditioning (Cont.)	
14 th	53 rd	Split type air conditioning	8 th Visit to an ice plant, cold storage
	54 th	Concept of central air condition (Cont.)	plant, central air conditioning plant.
	55 th	Concept of central air condition	
	56 th	Automobile air-conditioning (Cont.)	
15 th	57 th	Automobile air-conditioning	VIVA- VOCE
	58 th	Revision of Syllabus	
	59 th	Revision of Syllabus	
	60 th	SESSIONAL III	

DEPARTMENT OF MECHANICAL ENGINEERING

Lesson Plan

Head of Department: Er. SHALANDER MOR

Name of the Faculty : Sh. SANJAY KUMAR

Discipline : Mechanical Engineering

Semester : 5TH

Subject : TOM

Lesson Plan duration: 15 weeks

Week		Theory	Practical	
	Lecture	Topic	Practica	Topic
	Day	(Including assessment/test)	1 Day	1
1st	1 st	Unit 1: Simple Mechanisms Introduction,	1 st	NA
	2nd	Introduction to link, kinematic pair, lower and higher pair,		
	3rd	Kinematic chain, Different types of mechanisms		
2nd	4th	Power Transmission Introduction to Belt and Rope drives, Types of belt drives and types of pulleys.	2^{nd}	NA

	5th	Concept of velocity ratio, slip and creep crowning of pulleys		
	6 th			
3rd	$7_{ m th}$	Flat and V belt drive: Ratio of driving tensions	$3^{\rm rd}$	NA
	8th	power transmitted, centrifugal tension		
		condition for maximum horse power		
	9th			
4th	10 th	Different types of chains and their terminology	4 th	NA
	11 th	Gear terminology, types of gears and their applications		

	12th	power transmitted by simple spur gear		
5th	13 th	Principle and applications of flywheel	5 ¹	NA
	14 th	Turning - moment diagram of flywheel for different engines Fluctuation of speed and fluctuation of energy - Concept only		

				I
				•
6th	16 th	1 st sessional test (Tentative)	6th	NA
	17 th	Coefficient of fluctuation of speed and		
-		coefficient of fluctuation of energy		
		Simple numerical problems on fluctuation		
	18th	of speed and fluctuation of energy		
	100			
	19 th	Principal of governor	_	NA
7th	19		7th	
	415	Simple description and working of Watt,		
	20 th	Porter and Hartnel governor		
-		Hunting, isochronism, stability,		
		sensitiveness of a governor		
		č		
	21 st			
		Simple		
	1	numerical		
8th	22 nd	problems	8th	NA
		Concept of balancing		
-	23rd	Introduction to balancing of rotating		
	24 th	masses		
				NA
		Concept of vibrations and its toward		
9 _{th}	25 th	Concept of vibrations and its types - longitudinal, transverse and torsional	0.	
9 th	23	vibrations	9th	
		Concept of vibrations and its types -		
	26th	longitudinal, transverse and torsional vibrations		
	ZOth	Concept of vibrations and its types -		
	.1	longitudinal, transverse and torsional		
	27 th	vibrations		
1 oth	a oth	Cimple growspiech graftlage	1 oth	NA
10 th	28 th	Simple numerical problems	10 th	NA

	29 th	Damping of vibrations		
	30 th	2 nd sessional test		
11 th	31 st 32 nd	Assessment Causes of vibrations in machines,	11 th	NA
	33rd	Causes of vibrations in machines,		
12th	34th	REVISION	12th	NA
	35th	REVISION		
	36 th	REVISION		

13 th	37 th	REVISION		NA
		TEST		
	38 th			
	39 th	TEST		
		TEST		
14 th	40 th		14 th	NA
	41 st	REVISION		
		REVISION		
	42 nd			
		REVISION		
15th	43rd		15th	NA
	44 th	3 rd sessional test		
	45 th	Assessment		

DEPARTMENT OF MECHANICAL ENGINEERING Lesson Plan

Head of Department: Er. SHALANDER MOR

Name of the faculty: Er..SHALANDER MOR

Discipline: MECHANICAL ENGINEERING

Semester: 5TH

Subject: WORKSHOP TECHNOLOGY-III

Lesson Plan Duration: 15 weeks

Wee	Theory			Practical
k	Lectur e Day	Topic (including assignment / test)	Pra ctic al Day	Topic
1 st	1	Milling (12 hrs) 1.1 Specification and working principle of milling machine 1.2 Classification, brief description and applications of milling machine		
	2	1.3 Main parts of column and knee type milling machine 1.4 Milling machine accessories and attachment – Arbors, adaptors, collets, vices,		
	3	circular table, indexing head and tail stock, vertical milling attachment		

2 nd	4	1.5 Milling methods - up milling and down milling 1.6 Identification of different milling cutters and work mandrels	
	5	1.7 Work holding devices 1.8 Milling operations– face milling, angular milling, form milling,straddle milling and gang milling.	
	6	1.9 Cutting parameters 1.10 Indexing on dividing heads, plain and universal dividing heads	
3 rd	7	1.11 Indexing methods: direct, Plain or simple, compound, differential and angular indexing, numerical problems on indexing.	

	8	Grinding (12 hrs) 2.1 Purpose of grinding	
	9	2.2 Various elements of grinding wheel –	
		Abrasive, Grade, structure, Bond	
4 th	10	2.3 Common wheel shapes and types of wheel	
		– built up wheels, mounted wheels and	
		diamond wheels. Specification of grinding	
		wheels as per BIS.	
	11	2.4 Truing, dressing, balancing and mounting of	
		wheel.	
	12	2.5 Grinding methods – Surface grinding,	
		cylindrical grinding and centreless grinding.	
5 th	13	2.6 Grinding machine – Cylindrical grinder,	
		surface grinder, internal grinder, centreless	
		grinder, tool and cutter grinder.	
	14	2.7 Selection of grinding wheel	
	15	REVISION	
6 th	16	REVISION	
	17	REVISION	
	18	3. Gear Manufacturing and Finishing Processes	
7 th	19	3.1 Gear hobbing	
	20	3.2 Gear shaping	
	21	Modern Machining Processes (08 hrs)	
8 th	22	4.1 Mechanical Process - Ultrasonic machining	
		(USM): Introduction, principle,	
	23	process, advantages and limitations,	

		applications	
	24	4.2 Electro Chemical Processes - Electro chemical machining (ECM) – Fundamental	
9 th	25	principle, process, applications, Electro chemical Grinding (ECG) – Fundamental	
	26	principle, process, application	
	27	4.3 Electrical Discharge Machining (EDM) - Introduction, basic EDM circuit,	
10 th	28	Principle, metal removing rate, dielectric fluid, applications	
	29	4.4 Laser beam machining (LBM) – Introduction, machining process and applications	
	30	4.5 Electro beam machining (EBM)- Introduction, principle, process and applications	
11 th	31	REVISION	
	32	REVISION	
	33	REVISION	
12 th	34	Metallic Coating Processes (02 hrs)	
	35	5.1 Metal spraying – Wire process, powder process, applications	
	36	5.2 Powder coating	
13 th	37	Metal Finishing Processes (12 hrs) 6.1 Purpose of finishing surfaces.	
	38	6.2 Surface roughness-Definition and units 6.3 Honing Process, its applications	
	39	6.4 Description of hones. 6.5 Brief idea of honing machines.	
14 th	40	6.6 Lapping process, its applications. 6.7 Description of lapping compounds and tools	
	41	6.8 Brief idea of lapping machines. 6.9 Super finishing process, its applications.	
	42	6.10 Polishing 6.11 Buffing	

15 th	43	REVISION	
	44	REVISION	
	45	REVISION	